Chapter 14 AnIntroductionto Tk 133

14.1 Widgetsand windows 134

14.2 Screens, decorations, and toplevel windows 136
14.3 Applicationsand processes 137

14.4 Scriptsand events 138

14.5 Wish: awindowing shell 138

14.6 Widget creation commands 139

14.7 Geometry managers 140

14.8 Widget commands 141

14.9 Commands for interconnection 142

Chapter 15 Tour Of The Tk Widgets 145

15.1 Framesandtoplevels 145
15.2 Labels, buttons, checkbuttons, and radiobuttons 146

15.3 Menus and menubuttons 148

15.3.1 Pull-down menus 150

15.3.2 Pop-up menus 150

15.3.3 Cascaded menus 150

15.3.4 Keyboard traversal and accelerators 151

154 Listboxes 151
155 Entries 152
15.6 Scrollbars 153
157 Text 154
158 Canvases 155
159 Scaes 157
15.10 Messages 157

Chapter 16 Configuration Options 159
16.1 How optionsareset 159
16.2 Colors 161
16.3 Screendistances 163
16.4 Reliefs 164

DRAFT (3/11/93): Distribution Restricted

Chapter 17

Chapter 18

Chapter 19

16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13

171
17.2
17.3
17.4
175
17.6
17.7

18.1
18.2
18.3
18.4

191
19.2

Fonts 164

Bitmaps 166

Cursors 166

Anchors 167

Script options and scrolling 169
Variables 171

Time intervals 171

The configure widget commandL71

The option databasel73

16.13.1Patterns 173

16.13.2RESOURCE_MANAGER property and .Xdefaults file 175
16.13.3Priorities 175

16.13.4The option command 176

Geometry Managers: The Placet79
An overview of geometry management79
Controlling positions with the placer182
Controlling the size of a slavel85

Selecting the master windowl85

Border modes 186

More on the place commandL86

Controlling the size of the masted 87

The Packer 189

Packer basics 189

Packer configuration options193
Hierarchical packing 196

Other options to the pack command97

Bindings 199

An overview of the bind command199
Event patterns 201

DRAFT (3/11/93): Distribution Restricted

Chapter 20

Chapter 21

Chapter 22

19.3
194
19.5
19.6
19.7
19.8

20.1
20.2
20.3

21.1
21.2
213
21.4
215

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
229

Sequences of event203
Conflict resolution 203
Substitutions in scripts 204
When are events processed205
Background errors: tkerror205
Other uses of bindings206

The Selection 207

Selections, retrievals, and gats 207
Locating and clearing the selectioi209
Supplying the selection withcTscripts 210

The Input Focus 213

Focus model: explicit vs. implicit 213
Setting the input focus 214

Clearing the focus 215

The default focus 215

Keyboard accelerators216

Window Managers 217

Window sizes 219

Gridded windows 220

Window positions 222

Window states 222

Decorations 223

Window manager protocols223

Special handling: transients, groups, and override-redirg2¢
Session managemen25

A warning about window manager225

DRAFT (3/11/93): Distribution Restricted

Chapter 23

Chapter 24

Chapter 25

Chapter 26

The Send Command 227
23.1 Basics 227
23.2 Hypertools 228
23.3 Application names 229
234 Security issues 229

Modal Interactions 231
24.1 Grabs 231
24.2 Keyboard handling during grabs 233
24.3 Waiting: the tkwait command 233

Oddsand Ends 237
25.1 Destroying windows 237
25.2 Timedelays 238
25.3 Theupdate command 239
25.4 Information about windows 240
25,5 Thetk command: color models 240
25.6 Variablesmanaged by Tk 241

Examples 243
26.1 A procedurethat generates dialog boxes 243
26.2 A remote-control application 247

DRAFT (3/11/93): Distribution Restricted

Part |l

Writing Scriptsfor Tk

132

DRAFT (3/11/93): Distribution Restricted

Chapter 14
An Introduction to Tk

Note:

Tk is a toolkit that allows you to create graphical user interfaces for thevkitiow sys-
tem by writing Tl scripts. Like €l, Tk is a C library package that can be included in C
applications. Tk extends the built-iclicommand set described in Part | with several
dozen additional commands that you can use to create user interface elementsdzalled
gets arrange them into interesting layouts on the screen gsimgetry managerand
connect them with each otherith the enclosing application, and with other applications.
This part of the book describes $Kcl commands.

In addition to its €| commands, Tk also provides a collection of C library functions
that can be invoked from C code in a Tk-based application. The library functions allow
you to implement new widgets and geometry managers in C. They are discussed in Part IV
of the book.

This chapter introduces the basic structures used for creating user interfaces with Tk,
including the hierarchical arrangements of widgets that make up interfaces and the main
groups of €l commands provided by Tk. Later chapters will go over the individual facili-
ties in more detail.

I've taken the liberty of describing things in the way | expect them to be when the book is
finally published, so the descriptions in this draft do not alwaysspand to the cuent
version of Tk (3.2). The following disprancies exist between this draft and Tk 3.2: (a) the
pack command syntax as describedehir diffeent than what exists in 3.2, although it
provides almost exactly the same set of festuib) Tk 3.2 doedréontain all of the built-

in bitmaps listed her(c)gr oove andr i dge reliefs ae not supported in Tk 3.2, and (d)
embedded widgetsanot yet supported in text widgets. As new versions ofeTk ar
released the disepancies should gradually disappear

133

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

134 An Introduction to Tk

Press Me

@
(©

Sample text]

(b)

Figure 14.1. Examples of widgets in Tk: (a) a button widget displays a text string and invok
given Tl command when a mouse button is clicked over it; (b) an entry widget displays a o
text string and allows the text to be edited with the mouse and keyboard; (c) a scrollbar wid
displays a slider and two arrows, which can be manipulated with the mouse to adjust the vi
some other widget.

14.1 Widgets and windows

The basic user interface elements in Tk are callddets. Examples of widgets are labels,
buttons, pull-down menus, scrollbars, and text entries (see Figure 14dggts\are
grouped intaclasses, where all of the widgets in a class have a similar appearance on the
screen and similar behavior when manipulated with the mouse and keyboard. For exam-
ple, widgets in the button class display a text string or bitmap as shown in Figure 14.1(a).
Different buttons may display their strings or bitmaps ifedéht ways (e.g. in diérent
fonts and colors), but each one displays a single string or bitmap. Each button also has a
Tcl script associated with it, which is invoked whenever mouse button 1 is pressed with
the mouse cursor over the widget.fBiént button widgets may havefdifent commands
associated with them but each one has an associated command. When you create a widget
you select its class and provide additional class-spegifions, such as a string or bitmap
to display or a command to invoke.

Tk’s built-in widget classes implement the MBYflook-and-feel standard specified
by the Open Software Foundation. The Motif standard determines the three-dimensional
look that you'll see in the Tk widgets and many aspects of their behavior

Each widget is implemented using one window in the X window system, and the
terms “window” and “widget” are used interchangeably in this bodkg@ls may be
nested in hierarchical arrangements with widgets containing other widgets that contain
still other widgets. The result is a tree-like structure such as the one shown in Figure 14.2.
Each widget can contain any number of children and the widget tree can have any depth.
The widgets with behavior that is meaningful to the user are usually at the leaves of the
widget tree; the highdevel widgets are usually just containers faganmizing and arrang-
ing the leaf widgets.

DRAFT (3/11/93): Distribution Restricted

14.1 Widgets and windows 135

Fle - Help |
Havzaii A
Idaho
Minois
Indiana J .listbox .menu .scroll
lowra
Kansas
Kentucky
Louisiana
s menu. fil e. menu. hel
Maryland ri ’ ’ ’ ’ P
(@) (b)
EIE\ /'/ﬂem
Havraii . ~
Idaho
linois
Indiana J
lowa ‘__,,,,,// \
Kansas
Kentucky
Louisiana
Maine
Maryland Fi
(©

Figure 14.2. Widgets are arranged hierarchicallycollection of widgets is shown in (a) as it
appears on the screen, and the hierarchical structure of the collection is shown in (b). An e
view of the screen is shown in (c) to clarify the widget structure. The topmost widget in the
hierarchy (“.”) contains three children: a menu bar across the top, a scrollbar along the right
and a listbox filling the remaindérhe menu bar contains two children of its owRj &e menu
button on the left and Hel p menu button on the right. Each widget has a name that reflect:
position in the hierarchyuch as nenu. hel p for theHel p menu button.

DRAFT (3/11/93): Distribution Restricted

136

An Introduction to Tk

14.2

Each widget/window has a textual name that is used to refer todt @@fimands.
Window names are similar to the hierarchical path names used to name files in Unix,
except that *” is used as the separator character insteati”ofThe name “.” refers to the
topmost window in the hierarchyhich is called thenain window. The name a. b. ¢
refers to a windowe that is a child of window a. b, which in turn is a child of a, which
is a child of the main windaw

Screens, decorations, and toplevel windows

Tk creates the main window of an application as a child of the root window of a particular
screen. This causes the main window to appear on that sceegwiidow manager will

then create a decorative frame around the main winatbieh usually displays a title and
provides controls that you can use to move and resize the wiAdgwen window man-

ager will decorate all applications in the same,voay diferent window managers may

use diferent styles of decoration. Figure 14.2 showed a main window without any win-
dow manager decoration; other figures will show decorations as providedriwntivén-

dow manager (e.g. see Figure 14.3).

X clips each window to the area of its parent: it will not display any part of a window
that lies outside the area of its parent. The descendants of the main window are called
internal windows to reflect the fact that they appear inside the area of the main window
However applications often need to create widgets that ard temside the main win-
dow. For example, it might be useful to position a dialog box in the center of the screen
regardless of the position of the main wingdowan application might wish to post several
panels that the user can move around on the screen indeperfe@nsiyuations like this
Tk provides a third kind of window called@p-level window. A top-level window
appears like an internal window in the applicatonidget hierarchy (e.g. it might have a
name like. a. b) but its X window is created as a child of the screemot rather than its
parent in the Tk widget hierarchjhe window manager will treat top-level windows just
like main windows, so the user will be able to move and resize and iconify each top-level
window separately from the main window and other top-level windoasIdvel win-
dows are typically used for panels and dialog boxes. See Figure 14.3 for an example.

It is not necessary for all of the widgets of an application to appear on the same screen
or even the same displaihen you create a top-level widget you can specify a screen for
it. The screen defaults to the screen of the widgpttent in the Tk hierarchiyut you can
specify any screen whose X server will accept a connection from the application. For
example, its possible to create a Tk application that broadcasts an announcement to a
number of wokstations by opening a top-level window on each of their screens.

Once a widget is created on a particular screen, it cannot be moved to another screen.
This is a limitation imposed by the X window system. Howgeyeu can achieve the same
effect as moving the widget by deleting it and recreating it orfer€ift screen.

DRAFT (3/11/93): Distribution Restricted

14.3 Applications and processes

137

i | | T
| " States R —| _ Deletion Dialog | - | 1]
File Hel|
— = p| Are you sure that you
Hawvaii = really want to delete
Idaho "Kansas” from the
lllinois database?
Indiana J
lovra 8 Yes Ho x
Kansas
Kentucky . :
Louisiana
Maine

| Maryland Al
@
.listbox .nenu .scroll .dlg

.menu. file.nenu. hel p .dlg.nmsg.dlg.yes .dlg.no

(b)

Figure 14.3. Top-level widgets appear in the Tk widget hierarchy just like internal widgets, but
they are positioned on the screen independently from their parentsin the hierarchy. In this example
thedialog box . dI g isatop-level window. Figure (a) shows how the windows appear on the screen
(with decorations provided by the mmmwindow manager) and Figure (b) shows Tk’s widget
hierarchy for the application.

14.3

Applications and processes

In Tk the term application refers to a single widget hierarchy (one main window and any
number of internal and top-level windows descended fromit), asingle Tcl interpreter
associated with the widget hierarchy, plus all the commands provided by that interpreter.
Each application is usually a separate process, but Tk also allows a single process to man-
age several applications, each with its own widget hierarchy and Tcl interpreter. Tk does

DRAFT (3/11/93): Distribution Restricted

138

An Introduction to Tk

14.4

not provide any particular support for multi-threading (using a collection of processes to
manage a single application); it is conceivable that Tk could be used in a multi-threaded
environment but it would not be trivial and | know of no working examples.

Scripts and events

14.5

Tk applications are controlled by two kinds af $cripts: annitialization script andevent
handlers. The initialization script is executed when the application starts up. It creates the
applications user interface, loads the applicatodata structures, and performs any other
initialization needed by the application. Once initialization is complete the application
enters arevent loop to wait for user interactions. Whenever an interesting event occurs,
such as the user invoking a menu entry or moving the mouséseript is invoked to
process that event. These scripts are called event handlers; they can invoke application-
specific Tl commands (e.g. enter an item into a database), modify the user interface (e.g.
post a dialog box), or do many other things. Some event handlers are created by the initial-
ization script, but event handlers can also be created and modified by other event handlers.
Most of the Tl code for a Tk application is in the event handlers and the procedures
that they invoke. Complex applications may contain hundreds of event handlers, and the
handlers may create other panels and dialogs that have additional event handlers. Tk appli-
cations are thuevent-driven. There is no well-defined flow of control within the applica-
tion’s scripts, since there is no clear task for the application to carry out. The application
presents a user interface with many features and the user decides what to do next. All the
application does is to respond to the events corresponding to theact@&ms. The event
handlers implement the responses; they tend to be short scripts, and they are mostly inde-
pendent of each other

Wish: a windowing shell

While you're reading this book you may find it useful to experiment with a program called
wi sh (for “windowing shell”).W sh is the simplest possible Tk application. The ordly T
commands it contains are thel Built-ins and the additional commands provided by Tk. If
you invokewi sh with no aguments then it creates a main window and acts like a shell,
reading El commands from its standard input and executing them. For example, try typ-
ing the following commands tei sh:
button .b -text "Hello, world!" -conmand "destroy .
pack .b
This creates the application shown in Figure 14.4, consisting of a single button that dis-
plays the textMel | o, wor | d”. It also creates one event handler: if the user clicks
mouse button 1 over the widget then Tk will invoke the commdrdt'r oy . ", which

DRAFT (3/11/93): Distribution Restricted

14.6 Widget creation commands 139

S |

1 washl - |]
—! Hello, wurld!l

Figure 14.4. A simple Tk application created by typing commandsiteh.

14.6

destroys the applicatiammain window and all its descendants and thereby causds
to exit. W sh responds to events for the applicatfowindows as well as to commands
typed on its standard input.

You can also usei sh to invoke scripts that have been saved in files. For example,
you could create a file naméeé! | o that contains the above two commands. Then you
could start upd sh and type

source hello
to process the file. Qyou could invoken sh with the following shell command:

wish -f hello
In this casenv sh will not read commands from standard input. Instead, it will execute the
script contained in the fileel | o and then enter an event loop where it responds only to
events from the applicationivindows.

Wish scripts can also be invoked using the same mechanismubat! for shell
scripts in UNIX. D do this, enter the following comment as the first lineedf| o:

#!/usr/local /bin/wi sh -f
Then mark the script file as executableuan now invokéel | o directly from the
shell like any other executable program:

hel | o
This will runwi sh and cause it to process the script file just as if you'd typedli - f
hel | 0”.

See theni sh reference documentation for details on other features provided by
wi sh, such as command-linegaments fomi sh scripts. Ifwi sh isn’t installed ir/
usr/ | ocal / bi n on your system then you'll need to use &edént comment in your
script files that reflects the locationwifsh.

Widget creation commands

Tk provides four main groups otlfcommands; they create widgets, arrange widgets on
the screen, communicate with existing widgets, and interconnect widgets within and

DRAFT (3/11/93): Distribution Restricted

140

An Introduction to Tk

14.7

between applications. This section and the three following sections introduce the groups
of commands to give you a general feel for Tk's features. All of the commands are dis-
cussed in more detail in later chapters.

To create awidget, you invoke a command named after the widget's class: but t on
for button widgets, scr ol | bar for scrollbar widgets, and so on.. For example, the fol-
lowing command creates a button that displaysthetext “Press me” inred:

button .b -text "Press nme" -foreground red

All of the widget creation commands have aform similar to this. The command’'s nameis
the same as the name of the class of the new widget. The first argument is a name for the
new widget in thewidget hierarchy, . b in thiscase. Thiswidget must not already exist but
its parent must exist. The command will create the widget and its corresponding X win-
dow.

The widget name is followed by any number of pairs of arguments, where the first
argument of each pair specifies the name of aconfiguration optiorfor the widget (e.g.
-t ext or-f or egr ound) and the second argument specifiesavaluefor that option (e.g.
“Press ne” or r ed). Each widget class supports adifferent set of configuration options
but many options, such as- f or egr ound, are used in the same way by different classes.
You need not specify avalue for every option supported by awidget; defaults will be cho-
sen for the options you don’t specify. For example, buttons support about twenty different
options but only two were specified in the example above. Chapter 16 discusses configura-
tion optionsin more detail.

Geometry managers

Widgets don’t determine their own sizes and locations on the screen. This function is car-
ried out by geometry manager&ach geometry manager implements a particular style of
layout. Given a collection of widgets to manage and some controlling information about
how to arrange them, a geometry manager assigns a size and location to each widget. For
example, you might tell a geometry manager to arrange a set of widgetsin a vertical col-
umn. It would then position the widgets so that they are adjacent but don't overlap. If one
widget should suddenly need more space (e.g. its font is changed to alarger one) it will
notify the geometry manager and the geometry manager will move other widgets down to
preserve the proper column structure.

The second main group of Tk commands consists of those for communicating with
geometry managers. Tk currently contains four geometry managers. The placerisasim-
ple fixed-placement geometry manager. You give it instructions like “ place window . x at
location (10,100) in its parent and make it 2 cm wide and 1 cm high.” The placer issimple
to understand but limited in applicability because it doesn’t consider interactions between
widgets. Chapter 17 describes the placer in detail.

DRAFT (3/11/93): Distribution Restricted

14.8 Widget commands 141

button .top -text "Top button"

| e—— —
pack .top [=| wsh [|]
button .bottom -text "Bottom button" Top button|

pack . bottom ! Botiom bution | |

@ (b)

Figure 14.5. The scriptin () creates two button widgets and arranges them in avertical column
with the first widget above the second. The application’s appearance on the screen is shown in (b).

14.8

The second geometry manager is called the packer. It is constraint-based and allows
you to implement arrangements like the column example from above. It is more complex
than the placer but much more powerful and hence more widely used. The packer isthe
subject of Chapter 18.

Two other geometry managers are implemented as part of the canvas and text wid-
gets. The canvas geometry manager allows you to mix widgets with structured graphics,
and the text geometry manager mixes widgets with text. See the reference documentation
for canvas and text widgets for descriptions of these geometry managers.

When you invoke awidget creation command like but t on the new widget will not
immediately appear on the screen. It will only be displayed after you have asked a geome-
try manager to manage it. If you want to experiment with widgets before reading the full
discussion of geometry managers, you can make awidget appear by invoking the pack
command with the widget’'s name as argument. For example, the following script creates a
button widget and displays it on the screen:

button .b -text "Hello, world!"

pack .b
Thiswill size the main window so that it is just large enough to hold the button and it will
arrange the button so that it fills the space of the main window. If you create other widgets
and pack them in a similar fashion, the packer will arrange them in a column inside the
main window, making the main window just large enough to accommodate them all. See
Figure 14.5 for an example.

Widget commands

Whenever anew widget is created Tk also creates anew Tcl command whose name is the
same as the widget's name. This command is called awidget command, and the set of all
widget commands (one for each widget in the application) constitutes the third major

DRAFT (3/11/93): Distribution Restricted

142

An Introduction to Tk

14.9

group of Tks commands. Thus after the abtwg t on command was executed above, a
widget command whose name i3 appeared in the applicatisrinterpreterThis com-
mand will exist as long as the widget exists; if the widget is deleted then the command will
be deleted too.
Widget commands are used to communicate with existing widgets. Here are some

commands that could be invoked after It t on command from Section 14.6:

.b configure -foreground bl ue

.b flash

. b invoke
The first command changes the color of the budttext to blue, the second command
causes the button to flash brietiyd the third command invokes the button just as if the
user had clicked mouse button 1 on it. In widget commands the command name is the
name of the widget and the firsgament specifies an operation to invoke on the widget,
such agonfi gur e. Some widget commands, likenf i gur e, take additional gu-
ments; the nature of thesggaments depends on the specific command.

The set of widget commands supported by a given widget is determined by its class.

All widgets in the same class support the same set of commandsfénendiflasses have
different command sets. Some common commands are supported by multiple classes. For
example, every widget class supportoaf i gur e widget command, which can be used
to query and change any of the configuration options associated with the widget.

Commands for interconnection

The fourth group of Tk commands is used for interconnection. These commands are used
to make widgets work togethéo make them work cooperatively with the objects defined
in the application, and to allow t&fent applications sharing the same display to work
together in interesting ways.

Some of the interconnection commands are implemented as event handlers. For
example, each button has aonmand option that specifies allscript to invoke when-
ever mouse button 1 is clicked over the widget. This option was used in Section 14.5 to
terminate the application. Scrollbars provide another example of interconnection via event
handlers. Each scrollbar is used to control the view in some other widget: when you click
in the scrollbar or drag its slidehe view in the associated widget should change. This
connection between widgets is implemented by specifying edmmand for the scroll-
bar to invoke whenever the slider is dragged. The command invokes a widget command
for the asscociated widget to change its vievaddition to event handlers that are defined
by widgets, you can create custom event handlers usiryj thee command described in
Chapter 19.

Tk supports five other forms of interconnection in addition to event handlers: the
selection, the input focus, the window managesend command, and grabs. The

DRAFT (3/11/93): Distribution Restricted

14.9 Commands for interconnection 143

selection is a distinguished piece of information on the screen, such as arange of text or a
graphic. The X window system provides a protocol for applications to claim ownership of
the selection and retrieve the contents of the selection from whichever application ownsit.
Chapter 20 discusses the selection in more detail and describes Tk'ssel ect command,
which is used to manipulate it.

At any given time, keystrokes typed for an application are directed to a particular
widget, regardless of the mouse cursor’s location. This widget isreferred to as the focus
widget or input focus. Chapter 21 describesthe f ocus command, which is used to move
the focus among the widgets of an application.

Chapter 22 describes Tk’'s wncommand, which is used for communicating with the
window manager. The window manager acts as a geometry manager for main windows
and top-level windows, and the wmcommand can be used to make specific geometry
requests from the window manager, such as “don’t let the user make this window smaller
than 20 pixels across.” In addition, wmcan be used to specify atitle to appear in the win-
dow’s decorative border, atitle and/or icon to display when the window isiconified, and
many other things.

Chapter 23 describes the send command, which provides a general-purpose means
of communication between applications. With send, you can issue an arbitrary Tcl com-
mand to any Tk application on the display; the command will be transmitted to the target
application, executed there, and the result will be returned to the original application.
Send alows one application to control another application in intimate and powerful
ways. For example, adebugger can send commands to an editor to highlight the current
line of execution, or a spreadsheet can send commands to a database application to
retrieve new values for cellsin the spreadsheet, or amail reader can send commandsto a
video application to play avideo clip identifying the sender of a message.

Thelast form of interconnection is grabs, which are described in Chapter 24. A grab
restricts keyboard and mouse events so that they are only processed in a subtree of the
widget hierarchy; windows outside the grab subtree become lifeless until the grab is
released. Grabs are used to disable parts of an application and force the user to deal imme-
diately with a high-priority window such as a dialog box.

DRAFT (3/11/93): Distribution Restricted

144 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

Chapter 15
Tour Of The Tk Widgets

15.1

This chapter introduces the fifteen widget classes that are currently implemented by Tk.
The descriptions are not intended to explain every feature of every class; for that you
should refer to the reference documentation for the individual widget classes. In fact, no
specific Tk commands will be mentioned in this chagikrs chapter gives an overview

of the behavior of the widgets as seen by users and the features provided by the widgets to
interface designers. The purpose of this chapter is to provide you with general information
about the capabilities of T&kwidgets so that it will be easier to understand the specific
commands described in later chapters.

The widget behavior described in this chapter is not hard-coded into the widgets.
Instead, Tk contains a startup script that generates default behaviors for the widgets using
the binding mechanism described in Chapter 19. The descriptions in this chapter corre-
spond to the default behaviors, and most widgets in most applications will use the default
behaviors. Howeveit is possible to extend or override the defaults, so some Tk applica-
tions may contain widgets that behavdetiéntly than described here.

If you have access to the sh program and the Tk demonstration scripts (both of
which are included in the Tk distributions) then you can experiment with real widgets as
you read through the chaptéo do this, execute thd dget demonstration script and
use the menus to bring up various examples.

Frames and toplevels

Frames and toplevels are the simplest widgets. They have almost no interesting properties.
A frame appears as a rectangular region with a color and possibly a border that gives the

145

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

146

Tour Of The Tk Widgets

@ (b) ©

Figure 15.1. Frame and toplevel widgets have no visual characteristics except for acolor and an
optional three-dimensional border that can give the widget one of several appearances, such as
raised asin (), flat asin (b), or sunken asin (c).

15.2

frame araised or sunken appearance as shown in Figure 15.1. Frames serve two purposes.
First, they can be used to generate decorations such as a block of color or araised or
sunken border around a group of widgets. Second, they serve as containers for grouping
other widgets; most of the non-leaf widgets in the widget hierarchy are frames, and you'll
seein Chapter 18 that frames are particularly important for building up nested layouts
with geometry managers. When used in this way, frames are often invisible to the user.
Frames do not normally respond to mouse or keyboard actions.

Toplevel widgets areidentical to frames except that, as the name implies, they are
top-level widgets whereas frames (and almost all other widgets) are internal widgets. This
means that a toplevel widget can be positioned anywhere on its screen, independent of its
parent in the widget hierarchy, and it need not even appear on the same screen as its par-
ent. Toplevels are typically used as the outermost containers for panels and dialog boxes.
When you create a toplevel you can specify a screen for it to be displayed on.

Labels, buttons, checkbuttons, and radiobuttons

Labels, buttons, checkbuttons, and radiobuttons make up a family of widget classes with
similar characteristics. Each member of the family builds on the behavior of earlier mem-
bers. Labels are the simplest member of the family. They are similar to frames except that
each one can display atext string or abitmap (see Figure 15.2). Like frames, labels do not
normally respond to the mouse or keyboard; they simply provide decoration in the form of
atext string or bitmap.

Buttons are similar to labels except that they also respond to the mouse. When the
MOUSE cursor moves over a button, the button lights up. Thisindicates that pressing a
mouse button will cause something to happen. It isageneral property of Tk widgets that
they light up if the mouse cursor passes over them when they are prepared to respond to

DRAFT (3/11/93): Distribution Restricted

15.2 Labels, buttons, checkbuttons, and radiobuttons 147

w’@s W Bold +Times |

Whalic | - Helvetica |
Enter name here: Open File [~ Undetined | + Courier |
(€Y (b) (0 (d)

Figure 15.2. Members of the |abel/button family of widgets. Two labels are shown in (a); the top
one displays a bitmap and the bottom one displays a text string. Figure (b) shows a button widget.
Three checkbuttons appear in (c); any combination of the checkbuttons may be selected at once. A
group of three radiobuttons appearsin (d); only one of the radiobuttons may be selected at anygiven
time. Although a bitmap only appearsin (a), any of the classes can display abitmap aswell asa
string.

button presses. A button or other widget lit up in thisway it is said to be active. Buttons
become inactive again when the mouse cursor |eaves them.

If mouse button 1 is pressed when a button is active then the button’s appearance
changes to make it look sunken, asif areal button had been pressed. When the mouse but-
tonisreleased, the widget's original appearanceisrestored. Furthermore, when the mouse
button is released a Tcl script associated with the button is automatically executed. The
script is a configuration option for the button.

Checkbuttons allow users to make binary choices such as enabling or disabling under-
lining or grid-alignment. They are similar to regular buttons except for two things. First,
whenever mouse button 1 isclicked over acheckbutton a Tcl variable toggles between two
values, one representing an “on” state and the other representing an “ off” state. The name
of the variable and the values corresponding to the “on” and “off” states are configuration
options for the widget. Second, the checkbutton displays a small rectangular selector to
the left of itstext or bitmap. If the variable hasthe“on” value then the selector is displayed
in abright color and the button is said to be selected. If the variable has the “off” value
then the selector box appears empty. Each checkbutton monitors the value of its associated
variable and if the variable’s value changes (e.g. because of aset command) the check-
button updates the selector display.

The last member of the label/button family is the radiobutton class. Radiobuttons are
typically arranged in groups and used to select one from among several mutually-exclu-
sive choices, such as one of several colors or one of several styles of dashed lines.
Radiobuttons are named after the radio selector buttons on older cars, where pressing the
button for one station caused all the other buttons to be released. When mouse button 1is

DRAFT (3/11/93): Distribution Restricted

148

Tour Of The Tk Widgets

15.3

clicked over aradiobutton, the widget sets the variable to the “on” value associated with
that radiobutton. All of the radiobuttonsin a group will share the same variable but each
will have adifferent “on” value. A radiobutton displays a diamond-shaped selector to the
left of itstext or bitmap and lights up the selector when the widget is selected. Each
radiobutton monitors its variable so if some other radiobutton resets the variable to select
itself the previously-selected widget can turn off its selector diamond. If you change the
value of the variable using the Tcl set command then all of the associated radiobuttons
will redisplay their selectors to match the new value of the variable.

The members of the label/button family also have two additional features. First, you
can specify that the string to be displayed in the widget should be taken from a Tcl vari-
able. The widget will monitor the variable and update its display to reflect the current con-
tents of the variable. Second, you can disable the widget. While awidget isdisabled it is
displayed in dimmer colors, it doesn’t activate when the mouse cursor passes over it, and it
doesn’t respond to button presses.

Menus and menubuttons

Tk’s menu widget provides a general-purpose facility for implementing pull-down menus,
pop-up menus, cascading menus, and many other things. A menu isatop-level widget that
contains a collection of entries arranged in a column (see Figure 15.3(a)). Menu entries
are not distinct widgets but they behave much like the members of the label/button family
described in Section 15.2 above. The following types of entries may be used in menus:

Command: similar to a button widget. Displays atextua string or bitmap and invokes
aTcl script when mouse button 1 isreleased over it.

Checkbutton: similar to a checkbutton widget. Displays a string or bitmap and toggles
avariable between “on” and “off” values when button 1 isreleased over the entry. Also
displays a square selector indicating whether the variable is currently in its“on” or
“off” state.

Radiobutton: similar to a radiobutton widget. Displays a string or bitmap and sets a
variableto an “on” value associated with the enry when button 1 is released over it.
Also displays a diamond-shaped selector indicating whether or not the variable has the
value for this entry.

Cascade: similar to amenubutton widget. Posts a cascaded sub-menu when the mouse
passes over it. See below for more details.

Separ ator: Displays a horizontal line for decoration. Does not respond to the mouse.
Unlike most other widgets, menus do not normally appear on the screen. They spend
most of their time in an invisible state called unposted. When a user wants to invoke a
menu entry, he or she posts the menu, which makes it appear on the screen. Then the user
moves the mouse over the desired entry and releases button 1 to invoke that entry. Once

DRAFT (3/11/93): Distribution Restricted

15.3 Menus and menubuttons 149

[Bold 5 Hle Edit View Text| Graphics Help
: 'l:"‘“;"”_ I Bold
i . ¥ italic
& Times M Undetine
'. .l gn:lv!atlca & Times
e " Helvetica
Insert Bullet - Courier
Margins and Tabs... Insert Bullet
Margins and Tabs...

@ (b)
Hip Left/Right File Edit| View Text Graphics Help
gllpt;'tl;pfﬂuttnm Undo . Ciri+ 2
'_] - Redo Ctri+R
:!g" :;hgc_t;'" Delete Ctrl+%
et Copy CtrC
Line Color =x =
: . Group
Line Width => | 0.25 point
Line Style == [0.5 point Ungroup
S il Select Al
frrowhead =» |1 point & i =
Fll Pattem =» | Z points Bring to Front
- 4 points Move To Back
6 points
& points
© (d)

Figure 15.3. Examples of menus. Figure (a) shows a single menu with three checkbutton entries,
three radiobutton entries, and two command entries. The groups of entries are separated by separator
entries. Figure (b) shows the menu being used in pull-down fashion with a menu bar and several
menubutton widgets. Figure (c) shows a cascaded series of menus; cascade entries in the parent
(leftmost) menu display => at their right edges, and theLi ne W dt h entry is currently active.
Figure (d) contains amenu that supports keyboard traversal and shortcuts. The underlined characters
in the menubuttons and menu entries can be used to invoke them from the keyboard, and the key
sequences at the right sides of some of the menu entries (such asCt r | +X) can be used to invoke the
same functions as menu entries without even posting the menu.

the menu has been invoked it is usually unposted until it is needed again. Menus are
posted or unposted by invoking their widget commands, which gives the interface

DRAFT (3/11/93): Distribution Restricted

150

Tour Of The Tk Widgets

15.3.1

15.3.2

15.3.3

designer alot of flexibility in deciding when to post and unpost them. The subsections
below describe four of the most common approaches.

Pull-down menus

Menus are most commonly used in a pull-down style. In this style the application displays
amenu bar near the top of its main window. A menu bar is aframe widget that contains
several menubutton widgets as shown in Figure 15.3(b). Menubuttons are similar to but-
ton widgets except that instead of executing Tcl scripts when they are invoked they post
menu widgets. When a user presses mouse button 1 over a menubutton it posts its associ-
ated menu underneath the menubutton widget. Then the user can slide the mouse down
over the menu with the button still down and release the mouse button over the desired
entry. When the button is rel eased the menu entry isinvoked and the menu is unposted.
The user can release the mouse button outside the menu to unpost it without invoking any
entry.

If the user releases the mouse button over the menubutton then the menu stays posted
and the user will not be able to do anything else with the application until the menu is
unposted either by clicking on one of its entries (which invokes that entry and unposts the
menu) or clicking outside of the menu (which unposts the menu without invoking any
entry). Situations like this where a user must respond to a particular part of an application
and cannot do anything with the rest of the application until responding are called modal
user interface elements. Menus and dialog boxes are examples of modal interface ele-
ments. Modal interface elements are implemented using the grab mechanism described in
Chapter 24.

Pop-up menus

The second common style of menu usage is called pop-up menus. In this approach, press-
ing one of the mouse buttons in a particular widget causes a menu to post next to the
mouse cursor and the user can slide the mouse over the desired entry and releaseit there to
invoke the entry and unpost the menu. Aswith pull-down menus, releasing the mouse but-
ton outside the menu causes it to unpost without invoking any of its entries.

Cascaded menus

The third commonly used approach to posting menusis called cascaded menus. Cascaded
menus are implemented using cascade menu entries in other menus, such as pull-down
and pop-up menus. Each cascade menu entry is similar to a menubutton in that it is associ-
ated with a menu widget. When the mouse cursor passes over the cascade entry, its associ-
ated menu is posted just to the right of the cascade entry, as shown in Figure 15.3(c). The
user can then slide the mouse to the right onto the cascaded menu and select an entry inthe
cascaded menu. Menus can be cascaded to any depth.

DRAFT (3/11/93): Distribution Restricted

15.4 Listboxes 151

1534

15.4

Keyboard traversal and accelerators

Pull-down menus can also be posted from the keyboard using a technique called keyboard
traversal. One of the letters in each menubutton is underlined to indicate that it isthe tra-
versal character for that menubutton. If that letter istyped while holding the Al t key
down then the menubutton’s menu will be posted. Once a menu has been posted the arrow
keys can be used to move among the menus and their entries. The left and right arrow keys
move left or right among the menubuttons, unposting the menu for the previous menubut-
ton and posting the menu for the new one. The up and down keys move among the entries
in amenu, activating the next higher or lower entry. The Ret ur n key can be used to
invoke the active menu entry. In addition, the labels in menu entries are typically drawn
with one character underlined; if this character is typed when the menu is posted then the
entry isinvoked immediately.

Lastly, in many casesit is possible to invoke the function of a menu entry without
even posting the menu by typing keyboard shortcuts. If thereis ashortcut for amenu entry
then the keystroke for the shortcut will be displayed at the right side of the menu entry
(eg.Ctrl +Xisdisplayedin the Del et e menu entry in Figure 15.3(d)). This key combi-
nation may be typed in the application to invoke the same function as the menu entry (e.g.
type x while holding the Cont r ol key down to invoke the Del et e operation without
going through the menu).

Listboxes

A listbox isawidget that allows the user to select one or more possibilities from arange of
alternatives, such as afile name from those in the current directory or a color from a data-
base of defined colors. A listbox contains one or more entries, each of which displays a
one-line string as shown in Figure 15.4. The widget commands for listboxes allow entries
to be created, destroyed, and queried.

If there are more entries than there are linesin the listbox’s window then only afew of
them are displayed at atime; the user can control which portion is displayed by using a
separate scrollbar widget associated with the listbox (see Section 15.6). Theview in alist-
box can also be controlled by pressing mouse button 2 in the widget and dragging up or
down. Thisis called scanning: it has the effect of dragging the listbox contents past the
window at high speed. Most Tk widgets that support scrollbars also support scanning. If
the strings in the listbox are too long to fit in the window then the listbox can also be
scrolled and scanned in the horizontal direction.

Typically listboxes are configured so that the user can select an entry by clicking on it
with mouse button 1. In some cases the user can also select arange of entries by pressing
and dragging with button 1. Selected entries appear in a different color and usually have a
raised 3-D effect. Once the desired entries have been selected, the user will typically use
those entries by invoking another widget, such as a button widget or menu entry. For

DRAFT (3/11/93): Distribution Restricted

152 Tour Of The Tk Widgets

Hew York

MNorth Carolina

Morth Dakota

Ohio

Oklahoma

Oregon

Pennsylvania

Rhode Island

South Carolina

South Dakota
Figure 15.4. Anexample of alistbox widget displaying the names of all the statesin the U.S.A.
Only afew of the entries are visible in the window at one time. The Chi o entry is selected.

[sampfle text
Figure 15.5. Anexample of an entry widget. The vertical bar is the insertion cursor ,which
identifies the point at which new text will be inserted.
example, the user might select one or more file names from alistbox and then click on a
button widget to del ete the selected files; the Tcl command associated with the button wid-
get can read out the strings from the selected listbox entries. It's also common for listboxes
to support double-clicking, which both selects an entry and invokes some operation onit.
For example, in afile-open dialog box, double-clicking on afile name might cause that
file to be opened by the application.
15.5 Entries

An entry isawidget that allows the user to typein and edit a one-line text string. For
example, if adocument is being saved to disk for the first time then the user will have to
provide afile nameto use. The user might type the file name in an entry widget, then click
on a button widget whose Tcl command retrieves the file name from the entry and saves
the document in that file. Figure 15.5 shows an example of an entry widget.

To enter text into an entry the user clicks mouse button 1 in the entry. This makes a
blinking vertical bar appear, called the insertion cursor. The user can then type characters

DRAFT (3/11/93): Distribution Restricted

15.6 Scrollbars 153

Figure 15.6. A horizontal scrollbar widget. The rectangular slider indicates how much of the
document in an associated widget is visible in its window (in this case the rightmost 20% is visible).
The user can adjust the view in the associated widget by dragging the slider with mouse button 1 or
by clicking on the arrows or the slider region.

15.6

and they will be inserted into the entry at the point of the insertion cursor. The insertion
cursor can be moved by clicking anywhere in the entry’s text. Text in an entry can be
selected by pressing and dragging with mouse button 1, and it can be edited with avariety
of keyboard actions; see the reference documentation for details.

If the text for an entry istoo long to fit in its window then only a portion of it isdis-
played and the view can be adjusted using an associated scrollbar widget or by scanning
with mouse button 2. Entries can be disabled so that no insertion cursor will appear and
the text in the entry cannot be modified. The text in an entry can be associated with a Tcl
variable so that changes to the variable are reflected in the entry and changes made in the
entry are reflected in the variable.

Scrollbars

Scrollbar widgets are used to control what is displayed in other widgets. Each scrollbar is
associated with some other widget such as alistbox or entry. The scrollbar istypicaly dis-
played next to the other widget and when the user clicks and drags on the scrollbar the
view in the associated widget will change. A scrollbar appears as shown in Figure 15.6
with an arrow at each end and a dlider in the middle. The size and position of the slider
correspond to the portion of the associated widget's document that is currently visiblein
itswindow. For example, if the slider covers the rightmost 20% of the region between the
two arrows asin Figure 15.6 it means that the rightmost 20% of the document isvisiblein
the window. Scrollbars can be oriented either vertically or horizontally.

Users can adjust the view by clicking mouse button 1 on the arrows, which movesthe
view asmall amount in the direction of the arrow, or by clicking in the empty space on
either side of the slider, which moves the view by one screenful in that direction. The view
can also be changed by pressing on the slider and dragging it.

A scrollbar interacts with its associated widget using Tcl scripts. One of a scrollbar’s
configuration optionsis a Tcl script to invoke to change the view; typically this script
invokes the widget command for the associated widget. When the user manipul ates the

DRAFT (3/11/93): Distribution Restricted

154

Tour Of The Tk Widgets

framePtr—>tkwin:

display: Ozxet2d8

dispPtr: Dxef3zd
screentum:]

visual: DxeTabs

depth: 1

window: 12583011
childList: 00

parentPtr: DxehlZe

nextPtr: Oxeaelc

mainPtr: Dxe23ac

pathiame : 0x125had ". top"
nameUid: 0x12835c "top"
classUid: 0128454 "Toplewel"
changes: fz= =0, v =0, width = 1, height = 1,

border width = 0, sibling = 0, stack mode = O}

Figure 15.7. Anexample of atext widget. Thiswidget displaysthe contents of a structure as part of
asymbolic debugger. Tags are used to display field names in bold and to underline the name of the
structure.

15.7

scrollbar, the scrollbar invokes the script, including additional information about the new
view that the user requested. The associated widget changes its view and then invokes
another Tcl script (one of its configuration options) that tells the scrollbar exactly what
information is now displayed in the window, so the scrollbar can display the slider cor-
rectly. The scrollbar doesn’t update its slider until told to do so by the associated widget;
this makes it possible for the associated widget to reject or modify the user’s request (e.g.
to prevent the user from scrolling past the ends of the information in the widget).

Text

A text widget issimilar to an entry except that it allows the text to span more than oneline
(see Figure 15.7 for an example). Text widgets are optimized to handle large amounts of
text, such asfiles containing thousands of lines. Aswith entries, the user can click mouse
button 1 to set the insertion cursor and then type new information into atext. Information
in atext widget can be selected with the mouse just as for entries, and a number of mouse
and keyboard actions are defined to assist in editing (see the reference documentation for
details). Text widgets support scrolling and scanning, and they can be disabled to tempo-
rarily prevent edits.

In addition to the basic features described above, text widgets support three kinds of
annotations on the text: marks, tags and embedded widgets. A mark associates a name

DRAFT (3/11/93): Distribution Restricted

15.8 Canvases 155

Note:

15.8

with a particular position in the text (the gap between two adjacent characters). Marks are
used to keep track of interesting locations in the text as characters are added and del eted.

A tagisastring that is associated with ranges of charactersin atext widget. Each tag
may be associated with any number of ranges of characters in the text, and the ranges of
different tags may overlap. Tags are different from marksin that they are associated with
particular characters, so they disappear when the characters are deleted. Tags are used for
two purposes in texts: formatting and binding.

Each tag may contain formatting information such as background and foreground col-
ors, font, and stippling and underlining information. If a character has been tagged then
the formatting information in the tag overrides the default formatting information for the
widget as awhole. This makesit possible to display text with multiple fontsand colors. In
addition, the formatting information for atag can be changed at any time. For example,
you can apply atag to al instances of a particular word in the text, then modify the tag's
formatting information to make the words blink on and off.

The second use of tagsisfor bindings. A binding specifies a Tcl script to be invoked
when certain events occur; each tag may have one or more bindings associated with it. For
example, you can arrange for a script to be invoked whenever the mouse cursor passes
over text with a particular tag, or whenever amouse button is clicked over a particular
item (see Chapter 19 for more information on bindings). This can be used to produce
hypertext effects such as displaying a figure whenever the user clicks on the name of the
figurein atext widget.

The third form of annotation in texts consists of embedded widgets. It is possible to
embed other widgetsin atext so that the other widgets are displayed at particular positions
in the text. For example, you can arrange for a button widget to appear in atext widget as
another way of getting hypertext-like capabilities, or you can embed canvas widgets to
include figures inside texts, and so on.

Embedded widgets are not supported in Tk version 3.2.

Text annotations allow you to configure a given text widget in avariety of interesting
ways, so different text widgets may have very different behavior. For example, afile editor
might use a text widget to display an entire file in a single font with no special formatting
or bindings. In contrast, adebugger might use atext widget to display a structure as shown
in Figure 15.7, where the names of the structure’sfields are formatted differently than their
values and bindings are set up so that the user can click on fields to open new windows on
the structures pointed to by the fields.

Canvases

A canvasisawidget that displays adrawing surface and any number of graphical and tex-
tual items. The items can include rectangles, ellipses, arcs, lines, curves, polygons, cur-
vagons, editable text, bitmaps, and embedded widgets. See Figure 15.8 for examples.

DRAFT (3/11/93): Distribution Restricted

156

Tour Of The Tk Widgets

0 1 2 3 4 5 6 7
||I|||I|||I|||I|||I|||I|||I|||I||E|
FY FY

il il

@
P [
ZID

~—r e e

i}

10
-width 2 \

-arrowshape {8 10 3}

(b)

Figure 15.8. Canvas widget examples. Figure () shows aruler with atab well to the right. The
user can create new tab stops by pressing mouse button 1 in the tab well and dragging out a new tab
stop. Four existing tab stops appear underneath the ruler; they can be repositioned by dragging them
with the mouse. Figure (b) shows an editor for arrowhead shapes. The user can edit the arrowhead
shape and line width by dragging the three small squares attached to the oversized arrow. Changesto
this shape are reflected in the normal-size arrows on the right side of the canvas, in the dimensions
displayed next to the oversize arrow, and in the configuration option strings in the bottom left corner.

Items can be created and deleted at any time, and their display attributes (such asline
width and color) can also be modified dynamically. Items can be moved and scaled but
rotations are not currently supported.

Canvases a so provide atagging mechanism similar to the tagsin text widgets. Each
item may have any number of textual tags associated with it. Tags serve two purposesin
canvases. First, they make it easy to operate on groups of itemsall at once; for example, in
asingle command you can move or delete or recolor all items with a given tag. Second,
tags can have bindings associated with them just asin texts. This allows you to achieve

DRAFT (3/11/93): Distribution Restricted

15.9 Scales 157

Signal Strength

I [
i}
1] 20 40 B0 Lill} 100

Figure 15.9. A scalewidget. The scale's value can be adjusted by dragging the slider with the
mouse.

hypergraphic effects such asinvoking some operation whenever amouse button is clicked
over an item, or allowing some items to be dragged with the mouse.

Aswith texts, the features provided by canvases are flexible enough to achieve many
different effects, so different canvases may appear and behave very differently. Canvases
can be used to provide non-interactive graphical displays, such as pie-charts or figures, or
they can be used to create new kinds of editors and interactive widgets.

15.9 Scales

A scaleisawidget that displays anumerical value and allows the user to edit the value
(see Figure 15.9). A scale widget appears as alinear scale with optional numerical labels
and a dlider that shows the current value. The user can adjust the value by clicking mouse
button 1 in the scale or by dragging the dlider with mouse button 1. Each scale can be con-
figured with aTcl script to invoke whenever its value changes; the script can propagate the
new valueto other parts of the application. For example, three scales might be used to edit
the hue, saturation, and intensity values for a color; as the user modifies the scale values,
the new values can be used to update the color for anitem in a canvas so that theitem is
always displayed in the color selected by the scales.

15.10 Messages

A message widget displays amulti-line string of text like the one shown in Figure 15.10.
Messages are less powerful than texts (e.g. they don't allow their text to be selected or
edited, they don't provide annotations, they don't support scrolling, and they don’t handle
large amounts of text efficiently), but they are simpler to create and configure. Messages
aretypically used for simple things like multi-line messages in dialog boxes.

DRAFT (3/11/93): Distribution Restricted

158 Tour Of The Tk Widgets

You have made changes to
this document since the last
time it was saved. Isit OK to
discard the changes?

Figure 15.10. A message widget displays a string, breaking it into multiple lines if necessary.
Messages provide little other functionality (e.g. no edit capability).

DRAFT (3/11/93): Distribution Restricted

Chapter 16
Configuration Options

16.1

Most of the state of a widget exists as a sepofiguration optiongor the widget. For
example, the colors and font and text for a button widget are configuration options, as is
the Tcl script to invoke when the user clicks on the button. Each configuration option has a
name (e.g; r el i ef) and a value (e.g.ai sed). Widgets typically have 15-30 configu-
ration options. For widgets such as texts and canvases that have complex internal struc-
tures, the configuration options dbptovide complete access to the internal structures;
special widget commands exist for this purpose. Howatate that is shared among all

the objects in the internal structures (such as a default font for text widgets) is still repre-
sented as configuration options.

This chapter describes Bkinechanisms for dealing with configuration options. Sec-
tion 16.1 gives an overview of how the values of options are set. Sections 16.2-16.1
describe some of the common configuration options that are used in the Tk widget set.
Finally, Sections 16.12 and 16.13 explain tlenf i gur e widget command and the
option database in more detaiable 16.1 summarizes the commands for manipulating
configuration options. For a complete list of the options available for a given class, see the
reference documentation for the command that creates widgets of that class beiy- the
t on command)

How options are set

Configuration options may be specified in four ways. First, you can specify configura-
tion options in the command that creates a widget. For example, the command

159

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

160

Configuration Options

cl ass wi ndow ?opti onName val ue optionNane val ue ..?
Create anew widget with classcl ass and path namew ndow, and set
options for the new widget as given by opt i onName-val ue pairs.
Unspecified options arefilled in using the option database or widget defaullts.
Returnswi ndow as resullt.

wi ndow confi g
Returns a list whose elements are sublists describing all of the options for
wi ndow Each sublist describes one option in the form described below.
wi ndow confi g opti onNane
Returns alist describing option opt i onNare for wi ndow. The list will
normally contain five values: opt i onNarme, the option’s namein the option
database, its class, its default value, and its current value. If the optionisa
synonym for another option, then the list contains two values: the option
name and the database name for the synonym.
wi ndow confi g optionNane val ue
Set the value for option opt i onName of wi ndowto value.

option add pattern value ?priority?
Add anew option to the option database as specified by pat t er n and
val ue. Pri ority must be either anumber between 0 and 100 or asym-
bolic name (see the reference documentation for details on symbolic names).
option clear
Remove all entries from the option database.
opti on get w ndow nane cl ass
If the option database contains a pattern that matcheswi ndow, nane, and
cl ass, return the value for the highest priority matching pattern. Otherwise
return an empty string.
option readfile fileName ?priority?
Read f i | eName, which must have the standard format for a. Xdef aul t s
file, and add all the options specified in that file to the option database at pri-
ority level pri ority.

Table 16.1. The commands for manipulating widget configuration options.

button .help -text Help -foreground red

creates a new button widget and specifiesthe- t ext and - f or egr ound optionsfor it.
Every widget creation command has this form, where the command name is the name of
the widget class, the first argument is the name of the new widget in the Tk widget hierar-
chy, and additional arguments (if any) are name-value pairs specifying options.

The second way to specify configuration optionsis through the option database. If no
value is given for a configuration option on the command line that creates a widget, then
Tk checks the option database to see if a value has been specified for the option. The
option database is similar to the resource database in other X toolkits. It allows users to
specify values for optionsin the RESOURCE_ MANAGER property on the root window or

DRAFT (3/11/93): Distribution Restricted

16.2 Colors 161

ina. Xdef aul t s file. Entriesin the database can contain wildcard characters so that, for
example, asingle entry in the option database can set the background color for all buttons
to blue. See Section 16.13 for more information on the option database.

The third way that configuration options are specified is through default values for
each widget class. Class defaults are used for options that aren’t specified in the widget
creation command and aren’t defined in the option database. The class defaults are
intended to produce a reasonabl e effect so that you don’t need to specify most options
either on the command line or in the option database. The class defaults are compiled into
the Tk library so you can't change them without recompiling Tk, but you can always over-
ride them with values in the option database.

The final way to specify configuration options for awidget iswithitsconfi gur e
widget command. Every widget class supportsaconf i gur e widget command. For
example, the following command changes the text in the button widget created above and
also specifies a Tcl script to invoke when the user clicks on the widget:

.help configure -text Quit -command exit

Theconf i gur e widget command allows you to change the configuration options for a
widget at any time and it also allows you to query the current state of the configuration
options (see Section 16.12 for details on this).

16.2 Colors

Although each widget class defines its own set of configuration options, the options tend
to be used in a consistent fashion by different classes. This section and the onesthat follow
provide an overview of the most common options. These options have the same names
and legal valuesin many different widget classes.

The most common options are those for specifying colors. Every widget class sup-
portsa- backgr ound option, which determines the background color of the widget and
isalso used to compute the light and dark shadows if thereis a 3D border drawn around
the widget. Nearly every widget class also supportsa- f or egr ound option, which is
used when displaying text and graphicsin the widget. Table 16.2 lists all of the common
color options.

Color values may be specified either symbolically or numerically. A symbolic color
valueisanamesuch aswhi t e or r ed or SeaGr een2. Thevalid color names are
defined in afilenamedr gb. t xt inyour X library directory. Common names such as
bl ack andwhi t e and r ed should be defined in every X environment, but names like
SeaG een2 might not be available everywhere. Color names are not case-sensitive:
bl ack isthesameasBl ack or bLaCk.

Colors can also be specified numerically in terms of their red, green, and blue compo-
nents. Four forms are available, in which the components are specified with 4-bit, 8-bit,
12-bit, or 16-bit vales:

DRAFT (3/11/93): Distribution Restricted

162 Configuration Options

Name on Usage
Command Line
- backgr ound Background areas of widgets.
-foreground Text and graphics.
-acti vebackground Background color when widget is active (mouse

cursor is over widget and pressing a mouse button
will invoke some action).

-acti vef oreground Foreground color when widget is active.

- sel ect background Background color for areas occupied by selected
information within widget.

-sel ect f oreground Foreground color for selected text and graphics.

-insertbackground Color for insertion cursor.

- di sabl edf or egr ound | Foreground color when widget has been disabled.

Table 16.2. Commonly-used color options. The left column gives the name of the option as
specified in widget creation commands and conf i gur e widget commands. The right column
describes how the option is used.

#RGB

#RRGGBB

#RRRGGGBBB

#RRRRGGGCBBBB
Each R, G, or B in the above examples represents one hexadecimal digit of red, green, or
blue intensity, respectively. Thefirst character of the specification must be #, and the same
number of digits must be provided for each component. If fewer than 16 bits are given for
the color components, they represent the most significant bits of the values. For example,
#3a7 isequivalent to #3000a0007000. A value of al onesrepresents“full on” for that
color, and avalue of zero represents “ off.” Thus#000 is black, #f 00 isred, #f f 0 isyel-
low, and #f f f iswhite.

If you specify a color other than black or white for amonochrome display, then Tk
will use black or white instead, depending on the overall intensity of the color you
requested. Furthermore, if you are using a color display and all of the entriesin its color
map are in use (e.g. because you' re displaying a complex image on the screen) then Tk
will treat the display asif it were monochrome.

DRAFT (3/11/93): Distribution Restricted

16.3 Screen distances

163

Nameon
Command Line

Usage

-borderwi dth

Width of 3D border drawn around widget.

-activeborderw dth

Width of 3D border drawn around active elements
within widget.

-sel ect borderw dth

Width of 3D border drawn around selected text.

-insertw dth

Tota width of insertion cursor including its border,
if any.

-insertborderw dth

Width of 3D border for insertion cursor.

- padx Additional space to leave on left and right sides of
information displayed in widget.
- pady Additional space to leave above and below infor-

mation displayed in widget.

Table 16.3. Common options for specifying distances. The left column gives the name of the

option as specified in widget creation commands and conf i gur e widget commands. The right
column describes how the option is used.

16.3

Screen distances

Several options are used to specify distances on the screen. The most common of these
optionsis- bor der wi dt h, which determines the width of the 3D border drawn around a
widget. Every widget class supportsthe - bor der wi dt h option. Table 16.3 lists several
other common distance options.
Ultimately, each distance option must reduce to a distance in screen pixels. However,
Tk allows distancesto be specified either in pixels or in absolute unitsthat are independent
of the screen resolution. A distance is specified as an integer or floating-point value fol-
lowed optionally by asingle character giving the units. If no unit specifier is given then the

units are pixels. Otherwise the unit specifier must be one of the following characters:

inches

'03_'0

centimeters

millimeters
printer’s points (1/72 inch)

DRAFT (3/11/93): Distribution Restricted

164

Configuration Options

rai sed flat sunken ridge groove

Figure 16.1. Thethree-dimensional effects produced by different valuesfor the-r el i ef option.

16.4

For example, a distance specified as2. 2¢ will be rounded to the number of pixels that
most closely approximates 2.2 centimeters; this may be a different number of pixels on
different screens.

Reliefs

16.5

Every widget class supports an option named - r el i ef , which determines the three-
dimensional appearance of the widget. The option must have one of the valuesr ai sed,
fl at,sunken,ridge, orgroove. Figure 16.1 illustrates the effect produced by each
value. Tk draws widget borders with combinations of light and dark shadows to produce
the different effects. For example, if awidget'srelief isr ai sed then Tk draws the top
and left bordersin alighter color than the widget's background and it drawns the lower
and right bordersin adarker color. This makes the widget appear to protrude from the
screen.

The width of awidget’s 3D border is determined by its- bor der wi dt h option. If
the border width is 0 then the widget will appear flat regardiess of its- r el i ef option.

Fonts

The- f ont option isused to specify afont for widgets that display text, such as buttons,
listboxes, entries, and texts. Tk uses standard X font names, which areillustrated in Figure
16.2 The name of afont consists of twelve fields separated by hyphens. The fields have the
following meanings:

foundry Thetype foundry that supplied the font data.
family Identifies a group of fonts with asimilar typeface design.

DRAFT (3/11/93): Distribution Restricted

16.5 Fonts

165

family

slant pixels X-res spacing char. set

ol Tl

-adobe-ti nmes- bol d-r-normal -- 18-180- 75- 75- p- 99-i s08859- 1

Figure 16.2. Thefieldsof an X font name.

weight
sant
set width

pixels
points

X-res
y-res
spacing

width
char. set

Typographic weight of font, such asnedi um nor nal , or
bol d.

Posture of font, such asr for roman or upright, i for italic, or
o for oblique.

Proportionate width of font, such asnor nal or con-
densed or narr ow

Size of font in pixels.

Size of font in tenths of points, assuming screen has x-resand
y-res specified for font.

Horizontal resolution of screen for which font was designed,
in dots per inch.

Vertical resolution of screen for which font was designed, in
dots per inch.

Escapement class of font, such as mfor monospace (fixed-
width) or p for proportional (variable-width).

Average width of charactersin font, in tenths of pixels.

Character set that identifies the encoding of charactersin the
font.

When - f ont vauesyou can use* and ? wildcards: ? matches any single character in a
font name, and * matches any group of characters. For example, the font name
-times-nmedi umr-normal ---100-*
requests a 10-point Times Roman font in a medium (normal) weight and normal width. It
specifies “don’'t care” for the foundry, the pixel size, and all fields after the point size. If
multiple fonts match this pattern then the X server will pick one of them. | recommend
specifying the point size for fonts but not the pixel size, so that characterswill be the same
size regardless of the display resolution.

DRAFT (3/11/93): Distribution Restricted

166

Configuration Options

error gray25 gray50 hour gl ass

!

info guest head guestion war ni ng

Figure 16.3. Bitmaps defined internally by Tk.

16.6

Bitmaps

16.7

Many widgets, such aslabels and menubuttons, can display bitmaps. A bitmap isanimage
with two colors, foreground and background. Bitmaps are specified using the - bi t map
option, whose values may have two forms. If thefirst character of the value is @then the
remainder of the value isthe name of afile containing abitmap in the standard X 11 bitmap
file format. Such files are generated by the bi t map program, among others. Thus
“-bitmap @ ace. bit” specifiesabitmap contained inthefilef ace. bi t.

If the first character of the value isn’'t @then the value must be the name of a bitmap
defined internally. Tk defines several internal bitmaps itself (see Figure 16.3) and individ-
ua applications may define additional ones.

The - bi t map option only determines the pattern of 1's and O's that make up the bit-
map. The foreground and background colors used to display the bitmap are determined by
other options (typicaly - f or egr ound and - backgr ound). This means that the same
bitmap can appear in different colors at different placesin an application, or the colors of a
given bitmap may be changed by modifying the options that determine them.

Cursors

Every widget classin Tk supportsa- cur sor option, which determines the image to dis-
play in the mouse cursor when it is over that widget. If the- cur sor option isn’t speci-
fied or if its value is an empty string then the widget will use its parent’s cursor. Otherwise
the value of the - cur sor option must be a proper Tcl list with one of the following
forms:

name f gCol or bgCol or

nane fgCol or

DRAFT (3/11/93): Distribution Restricted

16.8 Anchors 167

16.8

nane

@ourceFil e maskFi |l e fgCol or bgCol or

@ourceFil e fgCol or
Inthefirst three forms nane refersto one of the cursorsin the standard X cursor font. You
can find acompletelist of al thelegal namesin the X includefilecur sor f ont . h. The
names in that file all start with XC_, such as XC_ar r owor XC_hand2; when using one
of these namesin a- cur sor option, omit the XC_, eg. ar r owor hand2. Most of the
Xlib reference manual's also include a table showing the names and images of all the cur-
sorsin the X cursor font; for example, see Appendix B of X Window System: The Com-
plete Reference to Xlib, X Protocol, ICCM, and XLFD, by Scheifler and Gettys, Second
Edition. If nane isfollowed by two additiona list elements as in the following widget
command:

.f config -cursor {arrow red white}
then the second and third elements give the foreground and background colors to use for
the cursor; aswith al color values, they may have any of the forms described in Section
16.2. If only one color value is supplied then it gives the foreground color for the cursor;
the background will be transparent. If no color values are given then black will be used for
the foreground and white for the background.

If the first character inthe - cur sor valueis @then the image(s) for the cursor are
taken from files in bitmap format rather than the X cursor font. If two file names and two
colors are specified for the value, as in the following widget command:

.f config -cursor {@ursors/bits cursors/mask red white}
then the first file is a bitmap that contains the cursor’s pattern (1's represent foreground
and 0's background) and the second file is amask bitmap. The cursor will be transparent
everywhere that the mask bitmap has a 0 value; it will display the foreground or back-
ground wherever the mask is 1. If only one file name and one color are specified then the
cursor will have atransparent background.

Anchors

An anchor position indicates how to attach one object to another. For example, if the win-
dow for a button widget is larger than needed for the widget’s text, a- anchor option
may be specified to indicate where the text should be positioned in the window. Anchor
positions are also used for other purposes, such astelling a canvas widget where to posi-
tion abitmap relative to a point or telling the packer geometry manager where to position
awindow initsframe.

Anchor positions are specified using one of the following points of the compass:

n Center of object’stop side.
ne Top right corner of object.

DRAFT (3/11/93): Distribution Restricted

168 Configuration Options

e Center of object’'sright side.
se Lower right corner of object.

S Center of object’s bottom side.
sSw Lower left corner of object.

w Center of object’sleft side.
nw Top left corner of object.

center Center of object.

The anchor position specifies the point on the object by which it is to be attached, asif a
push-pin were stuck through the object at that point and then used to pin the object some-
place. For example, if a- anchor option of wis specified for a button, it means that the
button’stext or bitmap isto be attached by the center of itsleft side, and that point will be
positioned over the corresponding point in the window. Thus w means that the text or bit-
map will be centered vertically and aligned with the left edge of the window. For bitmap
itemsin canvas widgets, the - anchor option indicates where the bitmap should be posi-
tioned relative to a point associated with the item; in this case, w means that the center of
the bitmap’s | ft side should be positioned over the point, so that the bitmap actually liesto
the east of the point. Figure 16.4 illustrates these uses of anchor positions.

Button Text

Button Text

@ (b)

(©) (d)

Figure 16.4. Examples of anchor positions used for button widgets and for bitmap items within
canvases. Figure (a) shows a button widget with text anchored w, and (b) shows the same widget
with an anchor position of ne. Figure(c) shows a canvas containing a bitmap with an anchor
position of wrelative to its point (the point appears as a cross, even though it wouldn’t appear in
an actual canvas). Figure (d) shows the same bitmap item with an anchor point of ne.

DRAFT (3/11/93): Distribution Restricted

16.9 Script options and scrolling 169

16.9 Script options and scrolling

Script options are used in many places in Tk widgets. The most common usage is for wid-
gets like buttons and menus that are supposed to take action when invoked by the user.
Thisis handled by specifying a Tcl script as a configuration option for the widget. For
example, button widgets support a- conmand option, which should contain a Tcl script.
When the user invokes the widget by clicking over it with the mouse button, the widget
causes the script to be executed. Similarly, each entry in amenu widget has a script associ-
ated with it, which is executed when the user invokes the menu entry.

Script options are also used for communicating between widgets. Typically, one wid-
get will be configured with part of a Tcl command (e.g. the name of another widget’s wid-
get command and the first argument to that command). At appropriate times, the widget
will invoke the command. Before invoking the command the widget will augment it with
additional information that is relevant to the specific invocation. The best example of this
is the communication between scrollbars and other widgets, which is described in the rest
of this section.

When a scrollbar is associated with another widget and used to change its view, the
communication between the scrollbar and the associated widget is controlled by two
options, one for the associated widget and one for the scrollbar. In normal usage, each of
these options invokes a widget command for the other widget.

The associated widget must inform the scrollbar about what it is currently displaying,
so that the scrollbar can display the slider in the correct position. To do this, the scrollbar
provides awidget command of the following form:

wi ndow set total Units wi ndowlnits first |ast
W ndowisthe name of the scrollbar widget (i.e. the name of the widget command for the
scrollbar). Tot al Uni t s indicatesthe total size of the information being displayed in the
associated widget in the dimension being scrolled, such asthe number of linesin alistbox
or the number of charactersin atext entry. W ndowUni t s indicates how much of the
information can be displayed in the widget at one time given the current size of itswin-
dow, andfirst andl ast givetheindices of the top and bottom elements currently vis-
iblein the widget’s window (for horizontal scrollbarsfi r st and| ast refer tothe
leftmost and rightmost visible elements).

The associated widget invokes the scrollbar’'s set command whenever information
of interest to the scrollbar changes in the widget. To do this, scrollable widgets provide a
- xScr ol I Command option if they support horizontal scrolling and a
-yScrol | Command option if they support vertical scrolling. For example, alistbox
might be created with a vertical scrollbar using the following commands:

listbox .l -yscrollcomrand {.vscroll set}
scrol I bar .vscroll -orient vertica

pack .1 -side |eft

pack .vscroll -side right

DRAFT (3/11/93): Distribution Restricted

170

Configuration Options

Thevalueof the- yscr ol | comand optionisaTcl command prefix. When the view in
the listbox changes (e.g. because el ements were deleted), the listbox takes the value of the
-yscrol | conmand option (“. vscrol | set ” inthis case) and appends four integer
values corresponding the thet ot al Uni t s, wi ndowUni ts,first,andl ast argu-
ments described above. Thiswill produce a Tcl command such as

.vscroll set 100 20 38 57

Then the listbox invokes the command, which causes the scrollbar to redraw its slider to
reflect the new view. If horizontal scrolling is desired for the listbox aswell, an additional
scrollbar could be created and a- xscr ol | command option could be specified for the
listbox.

A similar form of communication is used by the scrollbar to notify the associated wid-
get when the user manipulates the scrollbar to request anew view. Each scrollbar provides
a- command option, which specifiesaTcl command prefix for communicating new views
to the associated widget. It can be set for the. vscr ol | widget above using the follow-
ing command:

.vscroll config -command {.| yview}

Then when the user clicksin the scrollbar to change the view the scrollbar takes the
- command option and appends the index of the element that should now appear at the top
of the window. The result is a command like the following:

.1 yview 39
The scrollbar widget then invokes this command. Listboxes and other widgets that support
scrolling provideayvi ewwidget command with exactly the above syntax that causes the
widget to adjust its view. After adjusting its view, the listbox usesits- yscrol | com
mand option to notify the scrollbar of the new view so the scrollbar can redraw its slider.
This scheme has the advantage that neither widget needs any built-in information
about the other; both the name of the other widget and the widget command to invoke are
provided with options that can be configured by the application designer. In fact, the com-
mand options need not even correspond to widget commands. For example, asingle
scrollbar could be made to control two widgets simultaneously by using a Tcl procedure
name asits- conmand option:
.vscroll config -comuand scroll Proc
proc scroll Proc index {
.1 yview $i ndex
.12 yview $i ndex

}

Then the commands invoked by the scrollbar will 1ook like
scrol | Proc 39

andscrol | Proc will invokeyvi ewwidget commands in each of the two associated
widgets.

DRAFT (3/11/93): Distribution Restricted

16.10 Variables 171

16.10 Variables

16.11

Another common form for options is variable names. These options are used to associate
one or more Tcl global variables with awidget so that the widget can set the variable
under certain conditions or monitor its value and react to changes in the variable.

For example, many of the widgets that display text, such as labels and buttons and
messages and entries, support a- t ext var i abl e option. The value of the option isthe
name of a global variable that contains the text to display in the widget. The widget moni-
torsthe value of the variable and updates the display whenever the variable changes value.
In addition, for widgets like entries that can modify their text, the widget updates the vari-
able to track changes made by the user.

Checkbuttons and radiobuttons also support a- var i abl e option, which contains
the name of aglobal variable. For checkbuttons there are two additional options
(- onval ue and - of f val ue) that specify valuesto store in the variable when the
checkbuttonis“on” and “off.” Asthe user clicks on the checkbutton with the mouse, it
updates the variable to reflect the checkbutton’s state. The checkbutton also monitors the
value of the variable and changes its on/off stateif the variable’s value is changed exter-
nally. Each checkbutton typically has its own variable.

With radiobuttons a group of widgets shares the same variable but each radiobutton
has adistinct value that it storesinto the variable (the - val ue option). When the user
clicks on aradiobutton it sets the variable to its value and selectsitself. The radiobutton
monitors the variable so that it can deselect itself when some other radiobutton stores a
different valueinto the variable. If the variable’'s valueis changed externally then all of the
radiobuttons associated with the variable update their selected/desel ected state to reflect
the variable’'s new value.

Time intervals

16.12

Several widget classes provide options that specify time intervals, such asthe blink rate
for the insertion cursor or the rate at which mouse buttons should auto-repeat. Table 16.4
summarizes the most commonly used options for specifying intervals. Timeintervals are
always specified as integer numbers of milliseconds: an interval of 100 means 100ms,
1000 means one second, and so on.

The configure widget command

Every widget class supportsaconf i gur e widget command. This command comesin
three forms, which can be used both to change the values of options and also to retrieve
information about the widget's options. See Table 16.1 for a summary of these forms.

DRAFT (3/11/93): Distribution Restricted

172

Configuration Options

Nameon

Command Line Usage

-insertof fTi ne How long to leave insertion cursor turned off in
each blink cycle. Zero means cursor doesn't blink.

-insert OnTi me How long to leave insertion cursor turned onin
each blink cycle.

-repeat Del ay How long to wait before auto-repeating a button or
keystroke.

-repeat | nterval | Onceauto-repeat starts, how long to wait from one
auto-repeat to the next.

Table 16.4. Commonly-used timeinterval options. The |eft column gives the name of the option as
specified in widget creation commands and conf i gur e widget commands. The right column
describes how the option is used.

If confi gur e isgiven two additional arguments then it changes the value of an
option asin the following example:

.button configure -text Quit

If theconfi gur e widget command is given just one extra argument then it returns
information about the named option. The return valueis normally alist with five elements:
.button configure -text
-text text Text { } Quit
Thefirst element of thelist isthe name of the option asyou’ d specify it on a Tcl command
line when creating or configuring awidget. The second and third elements are a name and
classto use for looking up the option in the option database (see Section 16.13 below).
The fourth element is the default value provided by the widget class (a single space char-
acter in the above example), and the fifth element is the current value of the option.

Some widget options are just synonyms for other options (e.g. the - bg option for but-
tonsisthe same asthe - backgr ound option). Configuration information for a synonym
isreturned as alist with two elements consisting of the option’s command-line name and
the option database name of its synonym:

.button configure -bg
-bg background
If theconf i gur e widget command isinvoked with no additional arguments then it

returns information about all of the widget's options as alist of lists with one sub-list for
each option:

DRAFT (3/11/93): Distribution Restricted

16.13 The option database 173

.button configure

{-activebackground activeBackground Foreground Bl ack

Bl ack} {-activeforeground activeForeground Background
VWite White} {-anchor anchor Anchor center center}

{- background background Background White Wiite} {-bd
borderWdth} {-bg background} {-bitmap bitmp Bitmap {}
{}} {-borderwi dth borderWdth BorderWdth 2 2} {-comand
conmmand Conmand {} {}} {-cursor cursor Cursor {} {}}
{-di sabl edf or egr ound di sabl edFor egr ound

Di sabl edForeground {} {}} {-fg foreground} {-font font
Font - Adobe-Hel vetica-Bol d-R-Normal -*-120-* - Adobe-

Hel veti ca-Bol d-R-Normal -*-120-*} {-foreground
foreground Foreground Bl ack Bl ack} {-height hei ght

Hei ght 0 0} {-padx padX Pad 1 1} {-pady padY Pad 1 1}
{-relief relief Relief raised raised -state state
State normal normal} {-text text Text { } Quit}
{-textvariable textVariable Variable {} {}} {-width
width Wdth 0 0}

16.13 The option database

16.13.1

The option database supplies values for configuration options that aren’t specified explic-
itly by the application designer. The option database is consulted when widgets are cre-
ated: for each option not specified on the command line, the widget queries the option
database and uses the value found there, if any. If thereis no value in the option database
then the widget supplies a default value. Values in the option database are usually pro-
vided by the user to personalize applications, e.g. by using consistently larger fonts. Tk
supports the RESOURCE_MANAGER property and . Xdef aul t s filein the same way as
other X toolkits like Xt.

Patterns

The option database contains any number of entries, where each entry consists of two
strings: a pattern and a value. The pattern determines whether the entry appliesto agiven
option for a given widget, and the value is a string to use for options that match the pat-
tern.

Initssimplest form, apattern consists of an application name, awindow name, and an
option name, all separated by dots. For example, here are two optionsin this form:

wi sh. a. b. f or egr ound
wi sh. background

DRAFT (3/11/93): Distribution Restricted

174

Configuration Options

The first pattern appliesto thef or egr ound option in thewindow . a. b in the applica-
tionwi sh, and the second pattern appliesto thebackgr ound option in the main win-
dow for wi sh. Each of these patterns applies to only a single option for a single widget.

Patterns may also contain classes or wildcards, which alow them to match many dif-
ferent options or widgets. Any of the window names in the pattern may be replaced by a
class, in which case the pattern matches any widget that is an instance of that class. For
example, the pattern below appliesto all children of . a that are buttons:

wi sh. a. But t on. f or egr ound
Application and option names may also be replaced with classes. The class for an applica-
tion isthe class of its main window; names and classes for applications are discussed in
more detail in Chapter 22. Individual options also have classes. For example, the class for
thef or egr ound optionis For egr ound. Severa other options, such asact i ve-
Background andi nsert Backgr ound, aso have the class For egound, so the fol-
lowing pattern appliesto any of these options for any button widget that isachild of . a in
Wi sh:

wi sh. a. But t on. For egr ound

Lastly, patterns may contain * wildcard characters. A * matches any number of win-

dow names or classes, asin the following examples:

* For egr ound

wi sh*But t on. f or egr ound
Thefirst pattern appliesto any option in any widget of any application aslong as the
option’s classis For egr ound. The second pattern appliesto thef or egr ound option
of any button widget inthewi sh application. The* wildcard may only be used for win-
dow or application names; it cannot be used for the option name (it wouldn't make much
sense to specify the same value for all options of awidget).

This syntax for patterns isthe same as that supported by the standard X resource data-
base mechanismsin the X11R3 and X 11R4 releases. The ? wildcard, which was added in
the X11R5 release, is not yet supported by Tk’s option database.

In order to support the above matching rules, each option has three names:

1. the name that can be typed on acommand line, which always startswith a- and has no
upper-case letters, asin- act i vebor der wi dt h;

2. the name of the option in the database, which istypically the same as the command-line
name except that it contains no - and uses capital letters to mark internal word bound-
aries, asinact i veBor der W dt h;

3. the class of the option, which always starts with a capital letter and may contain addi-
tional capital letters to mark internal boundaries, asin Bor der W dt h.

When you query an option with theconf i gur e widget command all three of these

names are returned. It's important to remember that in Tk classes always start with an ini-

tial capital letter, and any name starting with an initial capital letter is assumed to be a

class.

DRAFT (3/11/93): Distribution Restricted

16.13 The option database 175

16.13.2

16.13.3

RESOURCE_MANAGER property and .Xdefaults file

When a Tk application starts up, Tk automatically initializes the option database. If there
isa RESOURCE_MANAGER property on the root window, then the database isinitialized
from it. Otherwise Tk checksthe user’s home directory for a. Xdef aul t s file and uses
it if it exists. The initialization information has the same form whether it comes from the
RESOURCE_MANAGER property or the. Xdef aul t s file. The syntax described below is
the same as that supported by other toolkits such as Xt.

Each line of the initialization data specifies one entry in the resource databasein a
form like the following:

*For eground: bl ue

The line consists of a pattern (* For egr ound in the example) followed by a colon fol-
lowed by whitespace and then a value to associate with that pattern (bl ue in the exam-
ple). If the value istoo long to fit on one line then it can be placed on multiple lines with
each line but the last ending in a backslash-newline sequence:

*Gzno.text: This is a very long initial \

value to use for the text option in all \

"G zno" w dgets.
The backslashes and newlines will not be part of the value.

Blank lines are ignored, as are lines whose first non-blank character is# or ! .

Priorities

Itispossiblefor several patternsin the option database to match a particular option. When
this happens Tk uses atwo-part priority scheme to determine which pattern applies. Tk's

mechanism for resolving conflicts is different than the standard mechanism supported by

the Tk toolkit, but | think it's simpler and easier to work with.

For the most part the priority of an option in the database is determined by the order in
which it was entered into the database: newer options take priority over older ones. When
specifying options (e.g. by typing them into your . Xdef aul t s file) you should specify
the more general optionsfirst, with more specific overridesfollowing later. For example, if
you want button widgets to have a background color of Bi squel and all other widgetsto
have white backgrounds, then put the following linesin your . Xdef aul t sfile:

*background: white

*But t on. background: Bi squel
The*backgr ound pattern will match any option that the* But t on. backgr ound
pattern matches, but the* But t on. backgr ound pattern has higher priority sinceit was
specified last. If the order of the patterns had been reversed then all widgets (including
buttons) would have white backgrounds and the * But t on. backgr ound pattern would
have no effect.

In some cases it may not be possible to specify general patterns before specific ones

(e.g. you might add a more general pattern to the option database after it has already been

DRAFT (3/11/93): Distribution Restricted

176

Configuration Options

16.13.4

initialized with a number of specific patterns from the RESOURCE_MANACER property).
To accommodate these situations, each entry also has an integer priority level between O
and 100, inclusive. An entry with ahigher priority level takes precedence over entrieswith
lower priority levels, regardless of the order in which they were inserted into the option
database. Priority levels are not used very often in Tk; for complete details on how they
work, please refer to the reference documentation.

TK’s priority scheme is different that the scheme used by other X toolkits such as Xt.
Xt gives higher priority to the most specific pattern, e.g. . a. b. f or egr ound ismore
specificthan* f or egr ound so it receives higher priority regardliess of the order in which
the patterns appear. In most cases thiswon't be a problem: specify options for Xt applica
tions using the Xt rules, and for Tk applications using the Tk rules. In cases where you
want to specify options that apply both to Tk applications and Xt applications, use the Xt
rules but al so make sure that the patterns considered higher-priority by Xt also appear |ater
inyour . Xdef aul t s file. In general, you shouldn’t need to specify very many optionsto
Tk applications (if you do, it suggests that the applications haven't been designed well), so
the issue of pattern priority shouldn’t come up often.

It's important to remember that the option database is only queried for options not
specified explicitly in the widget creation command. This means that the user will not be
ableto override any option that was specified on the command line. If you want to specify
avauefor an option but alow the user to override that value through the
RESOURCE_MANAGER property, you should specify the value for the option using the
opt i on command described below.

The option command

Theopt i on command allows you to manipul ate the option database while an application
isrunning. The command opt i on add will create a new entry in the database. It takes
two or three arguments. The first two arguments are the pattern and value for the new
entry and the third argument, if specified, isapriority level for the new entry. For example,

option add *Button. background Bi squel
adds an entry that sets the background color for all button widgetsto Bi squel.
The command
option clear

will remove al entries from the option database. Theopt i on readfi | e command
will read afile in the format described above for the RESOURCE _ MANAGER property and
make entriesin the option database for each line. For example, the following script dis-
cards any existing options (including those loaded automatically from the
RESOURCE_MANAGER property) and reloads the database from file newOpt i ons:
option clear
option readfil e newOptions

DRAFT (3/11/93): Distribution Restricted

16.13 The option database 177

Theoption readfil e command can also be given apriority level as an extraargu-
ment after the file name.

To query whether there is an entry in the option database that applies to a particular
option, usetheopt i on get command:

option get .a.b background Background

This command takes three arguments, which are the path name of awidget (. a. b), the
database name for an option (backgr ound) and the class for that option
(Backgr ound). The command will search the option database to seeif any entries match
the given window, option, and class. If so, the value of the highest-priority matching
option isreturned. If no entry matches then an empty string is returned.

DRAFT (3/11/93): Distribution Restricted

178 Configuration Options

DRAFT (3/11/93): Distribution Restricted

Chapter 17
Geometry Managers. The Placer

17.1

Geometry managers are the entities that determine the dimensions and locations of wid-
gets. Tk is similar to other Xltoolkits in that it doeshallow individual widgets to deter-
mine their own geometnA widget will not even appear on the screen unless it is
managed by a geometry managéis separation of geometry management from internal
widget behavior allows multiple geometry managers to exist simultaneously and it allows
any widget to be used with any geometry mandfesidgets selected their own geometry
then this flexibility would be lost: every existing widget would have to be modified to
introduce a new style of layout.

This chapter describes the overall structure for geometry management and then pre-
sents the placewhich is Tks simplest geometry manager . The placer manages windows
independently without considering other related windows, so ttusny flexible in the
layouts it produces. Because of this, the placer tends to be used only in special situations.
Chapter 18 describes a more powerful geometry manager called the paekeacker
lays out groups of windows togetheonsidering the needs of each of the windows when
laying out the group. This produces more flexible layouts but also makes the packer harder
to understand.

An overview of geometry management

A geometry managés job is to arrange one or matave windows relative to anaster

window. For example, it might arrange three slaves in a row from left to right across the
area of the masteor it might arrange two slaves so that they split the space of the master
with one slave occupying the top half and the other occupying the bottom hizfebif

179

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

180

Geometry Managers: The Placer

Requested size Parameters from Geometry of
from dave application designer master

Size and location Requested size
of dave for master

Figure 17.1. A geometry manager receives three kinds of inputs: arequested size for each slave
(which usually reflects the information to be displayed in the slave), commands from the application
designer (such as “arrange these three windows in arow”), and the actual geometry of the master
window. The geometry manager then assigns a size and location to each slave. It may also set the
requested size for the master window, which can be used by a higher-level geometry manager to
manager the master.

geometry managers embody different styles of layout. The master is often the parent of the
slave but there are timeswhen it’s convenient to use other windows as masters (you'll see
examples of this later).

A geometry manager receives three sorts of information for its use in computing a
layout (see Figure 17.1). First, each slave widget requests a particular width and height.
These are usually the minimum dimensions needed by the widget to display itsinforma:
tion. For example, a button widget requests a size just large enough to display itstext or
bitmap along with the border specified for the widget. Although geometry managersaren’t
obliged to satisfy the requests made by their slave widgets, they usualy do.

The second kind of input for a geometry manager comes from the application
designer and is used to control the layout algorithm. The nature of this information varies
from geometry manager to geometry manager. In some cases the information is very spe-
cific. For example, with the placer an application designer can specify the precise location
and dimensions for agiven slave; al the placer doesis to apply the given geomety to the
slave window. In other cases the information is more abstract. For example, with the
packer an application designer can name three slaves and request that they be arranged in
arow from left to right within the master; the packer will then check the requested sizes of
the slaves and position them so that they abut in arow, with each dave given just as much
space asit needs.

The third kind of information used by geometry managers is the geometry of the mas-
ter window. For example, the geometry manager might position a dlave at the lower left

DRAFT (3/11/93): Distribution Restricted

17.1 An overview of geometry management 181

corner of its master, or it might divide the space of the master among one or more slaves,
or it might refuse to display a slave altogether if it doesn't fit within the area of its master.

Once it has received al of the above information, the geometry manager executes a
layout algorithm to determine the dimensions and position of each of its slaves. If the size
of awidget isn't what it requested then the widget must make do in the best way it can.
Geometry managers usualy try to give widgets the space they requested, but they may
produce better layouts by giving widgets extra space in some situations. If thereisn’t
enough space in amaster for all of its slaves, then some of the slaves may get less space
than they asked for. In extreme cases the geometry manager may choose not to display
some slavesat al.

The controlling information for geometry management may change while an applica-
tion runs. For example, a button might be reconfigured with a different font or bitmap, in
which case it will change its requested dimensions. Or, the geometry manager might be
told to use a different approach (e.g., arrange a collection of windows from top to bottom
instead of left to right) or some of the slave windows might be deleted, or the user might
interactively resize the master window. When any of these things happens the geometry
manager recomputes the layout.

Some geometry managers (e.g. the packer) will set the requested size for the master
window. For example, the packer computes how much space is needed in the master to
accommodate all of its daves in the fashion requested by the application designer. It then
sets the requested size for the master to these dimensions, overriding any request made by
the master widget itself. This approach allows for hierarchical geometry management,
where each master isitself the slave of another higher-level master. Size requests pass up
through the hierarchy from each slave to its master, resulting ultimately in a size request
for atop-level window, which is passed to the window manager. Then actual geometry
information passes down through the hierarchy, with the geometry manager at each level
accepting the geometry of amaster and using it to compute the geometry of one or more
slaves. As aresult, the entire hierarchy sizesitself to just meet the needs of the lowest-
level slaves (the master windows “shrink-wrap” around their slaves).

Each widget can be managed by at most one geometry manager at atime, although it
is possible to switch geometry managers during the life of aslave. A widget can act as
master to any number of dlaves, and it is even possible for different geometry managersto
control different groups of slaves associated with the same master. A single geometry
manager can simultaneously manage different groups of slaves associated with different
masters.

Only internal windows may be slaves for geometry management. The techniques
described here do not apply to top-level or main windows. These windows are managed
by the window manager for the display; see Chapter 22 for information on how to control
their geometry.

DRAFT (3/11/93): Distribution Restricted

182 Geometry Managers: The Placer

pl ace wi ndow option val ue ?option val ue ..?
Sameaspl ace confi gur e command described below.

pl ace configure wi ndow option val ue ?option value ..?
Arranges for the placer to manage the geometry of wi ndow Theopt i on
and val ue arguments determine the dimensions and position of Wi ndow.

pl ace dependents w ndow
Returns a list whose elements are the slave windows managed by the placer
for whichwi ndowis the master.

pl ace forget w ndow
Causes the placer to stop managingwi ndow and unmap it from the screen.
Has no effect if wi ndowisn’t currently managed by the placer.

pl ace i nfo w ndow
Returns alist giving the current configuration of wi ndow The list consists
of opt i on-val ue pairsin exactly the same form as might be specified to
thepl ace confi gur e command. Returns an empty string if wi ndow
isn't currently managed by the placer.

Table 17.1. A summary of thepl ace command.
17.2 Controlling positions with the placer

The placer is a simple geometry manager that implements fixed placements. The applica
tion designer specifies the position and size of each slave relative to its master, and the
placer simply implements the requested placement. The placer treats each slave indepen-
dently, so changesin the placement of one slave have no effect on any other slave.

The pl ace command is used to communicate with the placer; see Table 17.1 for a
summary of its features. In its simplest form its arguments consist of awindow name and
one or more configuration options specified as name-value pairs:

place .x -x 0 -y O
This command positionswindow . X so that its upper-left corner appears at the upper-left
corner of its master, which defaultsto its parent. The placer supports about a dozen config-
uration optionsin al; Table 17.2 summarizes the options and Figure 17.2 shows some
examples of using the placer.

The placer determines the position of a slave window in two steps. Firdt, it usesthe
-X,-y,-rel x,and-rel y options to choose an anchor point, then it positions the slave
relative to that anchor point using the - anchor option. The anchor point is specified rel-
ativeto the upper left corner of the master window. If the - x and - y options are used then
the position is given with absolute distances in any of the forms described in Section 16.3.
If the-rel x and - r el y options are used then the position is specified as afraction of the
size of the master; for example, “- r el x . 75” specifies that the anchor point should lie

DRAFT (3/11/93): Distribution Restricted

17.2 Controlling positions with the placer 183

-x distance
Specifies the horizontal distance of the slave’'s anchor point from the left
edge of its master.

-y di stance
Specifies the vertical distance of the slave’s anchor point from the top edge
of its master.

-relx fraction
Specifies the horizontal position of the slave’s anchor point in arelative fash-
ion as afloating-point number. If f ract i onis0. 0 it refersto the master’s
left edge, and 1. O refersto theright edge. Fr act i on need not lie between
0.0and 1.0.

-rely fraction
Specifiesthe vertical position of the slave’'s anchor point in arelative fashion
as afloating-point number. If f ract i onis0. 0 it refersto the master’s top
edge, 3nd 1. O refersto the bottom edge. Fr act i on need not lie between
0.0 and 1.0.

-anchor anchor
Specifies which point on the slave window is to be positioned over the
anchor point.

-wi dth distance
Specifies the width of the slave.

- hei ght di stance
Specifies the height of the slave.

-relwidth fraction
Specifies the dave'swidth as afraction of the width of its master.

-rel hei ght fraction
Specifies the dave's height as afraction of the height of its master.

-in w ndow
Specifies the master window for the slave. Must be the slave’s parent or a
descendant of the parent.

- bor der nrode node
Specifies how the master’s borders are to be used in placing the slave. Mode
must bei nsi de, out si de, ori gnor e.

Table 17.2. A summary of the configuration options supported by the placer.

DRAFT (3/11/93): Distribution Restricted

184

Geometry Managers: The Placer

place .x -x 0 -y O place .x -relx 0.5 -y 1c \
-anchor n

(a) (b)

place .x -relx 0.5 -rely 0.5\ place .x -relx 0 -rely 0.5\
-anchor center -height 3c relwidth 0.5 -rel height 0.5

(c) (d)

Figure 17.2. Examples of using the placer to manage awindow. Each figure showsapl ace
command and the layout that results. The larger window is the master and the smaller shaded
window is. X, the slave being managed. In (a) and (b) the slave is given the size it requested. In (c)
the height of the daveis specified in the pl ace command, and in (d) both the width and height of
the slave are specified in the pl ace command.

three-fourths of the way from the left edge of the master to itsright edge. These forms can
be mixed for agiven dave, asin Figure 17.2(b).

The - anchor option indicates which point on the slave window should be posi-
tioned over the anchor point. It can have any of the anchor names described in Section
16.8. For example, an anchor position of s positions the slave so that the center of its bot-
tom edge lies over the anchor point.

It is possible to position a slave outside the area of its master, for example by giving a
negative - x option or a- r el y option greater than 1.0. However, X clips each window to
the dimensions of its parent, so the portions of the slave that lie outside its parent will not

DRAFT (3/11/93): Distribution Restricted

17.3 Controlling the size of a slave 185

17.3

appear on the screen. In the normal case where the parent is the master it probably isn't
very useful to position the slave outside its master. However, if the master isasibling or
nephew of the slave then the slave can be positioned outside its master and still be visible
on the screen. See Section 17.4 for information on changing the master window.

Controlling the size of a slave

17.4

By default, a slave window managed by the placer is given the size it requests. However,
the-width | -height ,-relwidth , and -relheight options may be used to over-
ride either or both of the slave's requested dimensions. The-width and -height
options specify the dimensions in absolute terms, and -relwidth and -relheight
specify the dimensions as a fraction of the size of the master. For example, the following
command sets the width of .x to 50 pixels and the height to half the height of its master:

place .x -width 50 -relheight 0.5

Selecting the master window

Note:

In most cases the master window for a given slave will be its parent in the window hierar-
chy. If no master is specified, the placer uses the parent by default. However, it is some-
times useful to use a different window as the master for a slave. For example, it might be
useful to attach one window to asibling so that whenever the sibling is moved the window
will follow. This can be accomplished using the -in configuration option. For example,
the following command arranges for .x always to be displayed with its upper-left corner
“glued” to the upper right corner of .y :

place .x -in .y -relx 1.0 -rely O

Inthisexample, .x won't actually be“in” .y ;.y will be.x 'smaster and .x will bedis-
played outside .y but adjacent to it.

The master for a slave must be either the parent of the slave or a descendant of the parent.
The reason for thisrestriction has to do with X’s clipping rules. Each window is clipped to
the boundaries of its parent; no portion of a child that lies outside of its parent will be
displayed. Tk's restriction on master windows gurantees that the slave will be visible and
unclipped if its master is visible and unclipped. Suppose that the restriction were not
enforced, so that window .x.y could have .a asits master. Suppose also that .a and .x
do not overlap at all. If you asked the placer to position .x.y at the center of .a , the
placer would set .x.y’ s position as requested, but thiswould cause .x.y to be outside
thearea of .x so X would not display it, even though .a isfully visible. This behavior
would be confusing to application designers so Tk restricts mastership to keep it from
occurring. The restriction appliesto all of Tk's geometry managers.

DRAFT (3/11/93): Distribution Restricted

186

Geometry Managers: The Placer

17.5

Border modes

17.6

Thelast configuration option for the placer is- bor der node; it determines how the mas-
ters borders are used in placing the slave, and it must have one of the valuesi nsi de,
out si de, ori gnor e. A border mode of i nsi de istypically used when placing the
slave inside the master, and it is the default. In this case, the placer considers the area of
the master to be itsinnermost area, inside any borders. The anchor point is specified rela-
tive to the upper-left corner of thisarea, andthe-rel x,-rel y,-rel wi dt h, and

-rel hei ght options use the dimensions of thisinner area.

A border mode of out si de istypically used when positioning the slave outside the
area of its master. In this case the placer considers the area of the master to be its outer-
most areaincluding al borders.

Thefinal border mode, i gnor e, causes the placer to completely ignore any borders
and use the master’s official X area. This areaincludes the 3D borders drawn by widgets,
which are drawn inside awindow’s X area, but excludes any external borders. The
i gnor e option is provided for completeness but probably isn't very useful.

More on the place command

So far the pl ace command has been discussed in its simplest form, where itsfirst argu-
ment is the name of a dlave window to manage. Pl ace also has several other forms,
where the first argument selects a particular command option. Pl ace confi gur e has
the same effect as the short form that’s been used so far. For example, the following two
commands have the same effect:

place .x -x 0 -y O

pl ace configure .x -x 0 -y O
Pl ace confi gur e (or place without a specific option) can be invoked at any time to
change the configuration of aslave window. When invoked on awindow already managed
by the placer, unspecified options retain their previous values.

The command pl ace dependent s returnsalist of al the slave windows man-

aged by the placer for a given master window:

pl ace dependents .

X .Y .Z
Pl ace i nf o returnsinformation about the current configuration of a slave window
managed by the placer:
pl ace info .x
-x 0 -y 0 -anchor nw

DRAFT (3/11/93): Distribution Restricted

17.7 Controlling the size of the master 187

17.7

Thereturn valueis alist containing name-value pairsin exactly the same form that you
would specify them to pl ace confi gur e. It can be used to record the placement of a
window so that it can be restored | ater.

Lastly, pl ace for get causesthe placer to stop managing a given slave window:

pl ace forget .x

Asaside effect, it unmaps the window so that it no longer appears on the screen. Pl ace
f or get isuseful if you decide that awindow should be managed by a different geometry
manager: you can tell the placer to forget it, then ask a different geometry manager to take
over. Youdon't need toinvokepl ace f or get before deleting awidget: the placer (like
all geometry managers) automatically forgets about widgets when they are deleted.

Controlling the size of the master

Although it is possible for a geometry manager to set the requested size for the master
windows it manages, the placer does not do this. It ssimply uses whatever size is provided
for a given master, without attempting to influence that size at all. Thusyou'll need to use
some other mechanism to specify the master’s size (e.g. if the master is aframe widget
you can request particular dimensions with the- wi dt h and - hei ght configuration
options).

DRAFT (3/11/93): Distribution Restricted

188 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

Chapter 18
The Packer

The packer is the second geometry manager provided by Tk. Although it is slightly more
complicated than the placer described in Chapter 17, it is more powerful because it
arranges groups of slaves togetia&king into account the needs of one slave when choos-
ing the geometry for the othersitWthe packer it is easy to achievéeefs such as
“arrange the following three windows in a row” or “put the menu bar across the top of the
window, then the scrollbar across the right side, then fill the remaining space with a text
widget.” Because of this, the packer is much more commonly used than thegiddie
placer tends to be used only for special purposespabk command, summarized in
Table 18.1, is used to communicate with the packer

Note: The pack command syntax described in this chapter iswhat will eventually existin a
future release of Tk. No existing release supports this syntax. The current Tk release
provides essentially all of the features described in this chapter but with a clumsier syntax.

The only difference in features hasto do with padding. Please refer to the manual entry for
the pack command before writing any scripts that use it.

18.1 Packer basics

The packer maintains a list of all the slaves for a given master wircddad thepacking

list. The packer arranges the slaves by processing the packing list inpaickéng one

slave in each step. At the time a particular slave is processed, part of the area of the master
window has already been allocated to earlier slaves on the list, leaving a rectangular unal-
located area left for this and all remaining slaves, as shown in Figure 18.1(a). The slave is

positioned in three steps: allocate a frame, stretch the slave, and position it in the frame.

189

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

190

The Packer

pack
pack

pack

pack

pack

wi ndow i ndow ..? opti on val ue ?option value ..?
Sameaspack confi gur e command described below.

configure wi ndow 2 ndow ..? option val ue ?option value ..?
Arrange for the packer to manage the geometry of thewi ndows. The
opt i on and val ue arguments provide information that determines the
dimensions and position of thewi ndows.

forget w ndow
Causes the packer to stop managingwi ndow and unmap it from the screen.
Has no effect if Wi ndowisn’t currently managed by the packer. Returns an
empty string.

i nfo wi ndow
Returns alist giving the current configuration of wi ndow The list consists
of opt i on-val ue pairsin exactly the same form as might be specified to
thepack confi gur e command. Returnsan empty stringif wi ndowisn’t
currently managed by the packer.

sl aves w ndow
Returns alist of the slaves on window’s packing list, in order.

Table 18.1. A summary of the pack command.

In the first step arectangular region called aframeis allocated from the available
space. Thisisdone by “slicing” off apiece along one side of the available space. For
example, in Figure 18.1(b) the frame has been sliced from the right side of the available
space. The packer allows you to control the width of the frame (if it is on the left or right)
or the height of the frame (if it is on the top or bottom) and which side to slice it from. By
default, the controllable dimension of the frame is taken from the window’s requested size
in that dimension.

In the second step the packer chooses the dimensions of the slave. By default the
davewill get the sizeit requested, but you can specify instead that it should be stretched in
one or both dimensions to fill the space of the frame. If the dave'srequested sizeis larger
than the frame then it is reduced to fit the size of the frame. In Figure 18.1(c) the Slave has
been stretched horizontally but not vertically.

The third step is to position the slave inside its frame. If the dlave is smaller than the
frame then you can specify an anchor position for the lave such asn, s, or cent er. In
Figure 18.1(c) the slave has been positioned in the center of the frame, which isthe
default.

Once the dave has been positioned, a smaller rectangular region is|eft for the next
daveto use, as shown in Figure 18.1(d). If aslave doesn’'t use al of the spacein itsframe,
asin Figure 18.1, the leftover space is unused; it won't be used for later daves. Thus each
step in the packing starts with a rectangular region of available space and ends up with a
smaller rectangular region.

DRAFT (3/11/93): Distribution Restricted

18.1 Packer basics 191

M aster Slave
Available Frame for
Space Slave

@ (b)

Available

Space for
Next Slave
(© (d)

Figure 18.1. The stepstaken to pack asingle slave. Figure (a) shows the situation before packing a
dlave. Part of the master’s area has aready been allocated for previous slaves, and a rectangular
region isleft for the remaining slaves. The current slave is shown in its requested size. The packer
allocates aframe for the slave along one side of the available space, as shown in (b). The packer may
stretch the slave to partially or completely fill the frame, then it positions the slave over the frame as
in (c). Thisleaves asmaller rectangular region for the next slave to use, as shown in (d).

The pack command is used to communicate with the packer. In its simplest form, a
pack command takes one or more window names as arguments, followed by one or more
pairs of additional arguments that indicate how to manage the windows. For example, con-
sider the following command:

pack .ok .cancel .help -side left

This command asks the packer to manage . ok, . cancel ,and. hel p asslavesand to
pack them in that order. The master for the slaves defaults to their parent. The “- si de

| ef t 7 option indicates that the frame for each slave should be allocated on the | eft side of
the available space. By default, the frame for each slave is allocated just wide enough for
the slave's requested width, and the slave is centered in its frame without any stretching.
The result is that the slaves will be arranged in arow from |eft to right across the master,
as shown in Figure 18.2 (b).

DRAFT (3/11/93): Distribution Restricted

192 The Packer
.ok .cancel . help
K| cancel] Hew| |
E Wish Cl = Wish ==
])
.~ —| WMish +|]

I OK | cancel | Help| ‘ 1 ﬂ Cancell E:I

. | |

@ (b) (©

Figure 18.2. A simple example of packing. Figure (a) shows a master window and the requested
sizes for three slaves. Figure (b) shows the arrangement that is produced by the command “pack
.0k .cancel .help -side |eft”ifthemaster'ssizeisfixed. In most cases, however, the
master will resize so that it just meets the needs of its dlaves, producing the result in (c).

The result in Figure 18.2(b) assumes that the master window isfixed in size. How-
ever, thisisn't usually the case. As part of itslayout computation the packer computes the
minimum dimensions the master would need so that al of its slavesjust barely fit, and it
sets the requested size of the master to those dimensions. In most cases the geometry man-
ager for the master will set the master’s size from those dimensions, so that the master
“shrink wraps” around the slaves. For example, top-level windows resize themslevesto
their requested dimensions unless other directions have been given with the wncommand
described in Chapter 22. Thus the result from the pack command aboveis morelikely to
be as shown in Figure 18.2(c). You can choose between the scenarios in Figure 18.2(b)
and Figure 18.2(c) with the way you manage the master’s geometry.

Figure 18.3 shows another simple packer example, which uses the following script to
arrange three windows:

pack .l abel -side top -fill x
pack .scrollbar -side right -fill vy
pack .listbox

The three windows are configured differently so a separate pack command is used for
each one. The order of the pack commands determines the order of the windowsin the
packing list. The . menubar widget is packed first, and it occupies the top part of the
master window. The“-fi |l X" option specifies that the window should be stretched
horizontally so that it fillsits frame. The scrollbar widget is packed next, in asimilar fash-
ion except that it is arranged against the right side of the window and stretched vertically.
Thewidget . | i st box ispacked last. No options need to be specified for . | i st box: it
gets all the remaining space regardless of which side it is packed against.

DRAFT (3/11/93): Distribution Restricted

18.2 Packer configuration options

193

.l abel .scroll bar

! I

List of States:l j

)]
= Wish]
Hawraii = ! l—
Idaho = Wish [<l=l
Minois List of States: !
Indiana Hawraii A
lowa Idaho
Kansas inois
Kentucky Indiana _]
Louisiana lowra
Maine Kansas
Maryland Kentucky
Louisiana
f Maine
.11 stbox Maryland v
@ (b)

Figure 18.3. Another packer example. Figure (a) shows amaster window (.) and the requested
sizesfor three slaves. Figure (b) shows the result of packing the slaves with the script

pack .label -side top -fill x
pack .scrollbar -side right -fill y
pack .listbox

under the assumption that the master window resizes to just meet the needs of its daves.

18.2

Packer configuration options

The examplesin the previous section illustrated a few of the configuration options pro-
vided by the packer; Table 18.2 contains acomplete listing. The options fall into three
groups: those that determine the location and size of a slave's frame; those that determine
the size and position of the slave within its frame; and those that select a master for the
slave and determine the lave's position in the master’s packing list.

Thelocation of adave'sframeis determined by the - si de option as aready dis-
cussed. For slaves packed on the top or bottom, the width of the frame is always the width
of the available space |eft in the master. The height of the frame is usually the requested
height of the slave; however, the options - padx, - i padx, - pady, and - i pady cause
the packer to pretend that the slave's requested size is larger than what the slave specified.
Slaves packed on the left and right sides are handled in an analogous fashion.

DRAFT (3/11/93): Distribution Restricted

194 The Packer

-after w ndow
Usewi ndow s master asthe master for the slave and insert the slaveinto the
packing list just after wi ndow

-anchor position
If the frameislarger than the slave'sfinal size, this option determines where
in the frame the slave will be positioned.

- bef ore wi ndow
Usewi ndow s master as the master for the slave and insert the slaveinto the
packing list just beforewi ndow.

- expand bool ean
If bool ean isatrue value then the dave's frame will be grown to absorb
any extra space |eft over in the master.

-fill style
Specifies whether (and how) to grow the slave if its frameis larger than the
slave'srequested size. St yl e must be either none, x, y, or bot h.

-in w ndow
Usewi ndowasthe master for slave. W ndowmust be the slave’s parent or a
descendant of the slave’s parent. If no master is specified then it defaults to
the dave's parent.

-i padx di stance
Di st ance specifiesinternal padding for the slave, which is extra horizontal
space to allow inside the slave on each side, in addition to what the dave
requests.

-i pady distance
Di st ance specifiesinterna padding for the slave, which is extra vertical
space to allow inside the slave on each side, in addition to what the slave
requests.

- padx di stance
Di st ance specifies external padding for the slave, which is extra horizon-
tal space to allow outside the slave but inside its frame on each side.

- pady di stance
Di st ance specifies external padding for the slave, which is extra vertical
space to alow outside the dlave but inside its frame on each side.

-si de side
Si de specifies which side of the master the slave should be packed against.
Must bet op, bottom | eft,orri ght.

Table 18.2. A summary of the configuration options supported by the packer.

DRAFT (3/11/93): Distribution Restricted

18.2 Packer configuration options 195

] [
wish |

oK [Cancel] Help] _

pack .ok .cancel .help -side left -ipadx 3m-ipady 2m -expand 1

Figure 18.4. Anexample of the padding and - expand options. When the pack command in the
figureis applied to the windows shown in Figure 18.2(a), the resulting layout is as shown in the
figure, assuming that the master’s size is fixed. Internal padding causes each window’s size to be
increased beyond what it requested, and the- expand option causes the extra space in the master to
be distributed among the slaves' frames.

The - expand option alows a frame to absorb |leftover space in the master. If the
master ends up with more space than its slaves need (e.g. because the user has interac-
tively stretched atop-level window), and if the - expand option has been set to true for
one of the slaves, then that slave’'sframe will be expanded to use up all the extra horizontal
or vertical space (for left/right and top/bottom slaves, respectively). If multiple daves
have the - expand option set, then the extra space is divided evenly among them. See
Figure 18.4 for an example that uses - expand and the padding options.

The size and location of a slave within its frame are determined by the-fi | | and
- anchor optionsin conjunction with the padding options. The-fi | | option can select
no filling, filling in asingle direction, or filling in both directions. If internal padding has
been specified for aslave (- i padx or - i pady) then the slave will be stretched by the
amount of theinternal padding even if no filling has been requested in that dimension. If
external padding has been specified for adave (- padx or - pady), then the packer will
leave the specified amount of space between the window and the edge of the frame even if
filling is requested.

If the final size of the slave is smaller than the frame, then the - anchor option con-
trols where to place the slave in the frame. This option may have any of the values
described in Section 16.8, such as nwto indicate that the northwest (upper-1eft) corner of
the slave should be positioned at the northwest corner of the frame. If external padding has
been specified with - padx or - pady, then nwreally refersto apoint inset from the cor-
ner of the frame by the pad amounts.

The third group of options, - i n, - bef or e, and - af t er, controls the master for a
slave and the position of the slave in the packing list. By default the master for adave is
its parent and the order of slavesin the packing list is determined by the order of their
pack commands. However, the - i n option may be used to specify a different master. As

DRAFT (3/11/93): Distribution Restricted

196

The Packer

pack .left -side left -padx 3m -pady 3m

pack .right -side right -padx 3m-pady 3m ~ @i points
pack .pts8 .ptsl0 .ptsl2 .ptsl8 .pts24 \ 410 points | Bold
-in .left -side top -anchor w 1Zpoints ¥ Halic

pack .bold .italic .underline \

T wen (]

~ 18 points & UndeHine
4 24 points

-in .right -side top -anchor w

€Y (b)

Figure 18.5. Hierarchica packing. The pack commandsin (@) produce the layout shown in (b).
Two invisible frame widgets, . | ef t and. ri ght, are used to achieve the column effect.

18.3

with the placer, the master must be either the slave's parent or a descendant of the slave's
parent (see page 185 for an explanation of thisrestriction). The- bef ore and - af t er
options alow you to control the order in which slaves are packed. When one of these
options is used, the master for the slave is automatically set to the master for the window
named in the option.

Hierarchical packing

The packer is often used in hierarchical arrangements where slave windows are also mas-
tersfor other daves. Figure 18.5 shows an example of hierarchical packing. The resulting
layout has a column of radio buttons on the left and a column of check buttons on the
right, with each group of buttons centered vertically in its column. To achieve this effect
two extraframewidgets, . | eft and. ri ght, are packed side by side in the main win-
dow, then the buttons are packed inside them. The packer sets the requested sizes for

.l eft and. ri ght to provide enough space for the buttons, then uses this information
to set the requested size for the main window. The main window’s geometry will be set to
the requested size, then the packer will arrange. | ef t and. ri ght insidetheit, and
finally it will arrange the buttonsinside. | eft and. ri ght.

Figure 18.5 also illustrates why it is sometimes useful for awindow’s master to be
different from its parent. It would have been possible to create the button windows as chil-
drenof .l eft and. ri ght (eg..| eft. pts8insteadof . pt s8) but it isbetter to cre-
ate them as children of . and then pack theminside. | ef t and. ri ght .The windows
.left and. ri ght serve no purposein the application except to help in geometry man-
agement. They are not even visible on the screen. If the buttons were children of their
geometry masters then changes to the geometry management (such as adding more levels
in the packing hierarchy) might require the button windows to be renamed and would

DRAFT (3/11/93): Distribution Restricted

18.4 Other options to the pack command 197

18.4

break any code that used the old names (such asentriesin users' . Xdef aul t s files). Itis
better to give windows names that reflect their logical purpose in the application, build
separate frame hierarchies where needed for geometry management, and then pack the
functional windows into the frames.

Other options to the pack command

So far the pack command has been discussed in its most common form, where the first
argument is the name of a slave window and the other arguments specify configuration
options. Table 18.1 shows several other forms for the pack command, where the first
argument selects a particular command option. Pack conf i gur e hasthe same effect as
the short form that’s been used up until now: the remaining arguments specify windows
and configuration options. If pack confi gur e (or the short form with no command
option) is applied to awindow that is already managed by the packer, then the dave's con-
figuration is modified; configuration options not specified in the pack command retain
their old values.

The command pack sl aves returnsalist of al of the slaves managed by the
packer for a given master window. The order of the slavesin thelist reflects their order in
the packing list:

pack slaves .left

Pack i nf o returnsall of the configuration options for a given dave:
pack info .pts8
-in .left -side top -anchor w
Thereturn valueis alist consisting of names and values for configuration optionsin
exactly the form you would specify themto pack confi gur e. Thiscommand can be
used to save the state of aslave so that it can be restored later.

Lastly, pack forget causesthe packer to stop managing one or more slaves and
forget all of its configuration state for them. It also unmaps the windows so that they no
longer appear on the screen. This command can be used to transfer control of awindow
from one geometry manager to another, or smply to remove awindow from the screen for
awhile. If aforgotten window isitself amaster for other laves, the information about
those slaves is retained but the slaves won't be displayed on the screen until the master
window becomes managed again.

DRAFT (3/11/93): Distribution Restricted

198 The Packer

DRAFT (3/11/93): Distribution Restricted

Chapter 19
Bindings

19.1

You have already seen that Scripts can be associated with certain widgets such as but-
tons or menus so that the scripts are invoked whenever certain eventsodewas click-
ing a mouse button over a button widget. These mechanisms are provided as specific
features of specific widget classes. Tk also contains a general-phinetiag mechanism
that can be used to create additional event handlers for widgets. A binding “birads” a T
script to an X event or sequence of X events in one or more windows; the script will be
invoked automatically by Tk whenever the given event sequence occurs in any of the win-
dows. You can create new bindings to extend the basic functions of a widget (e.g. with
keyboard accelerators for common actions), or you can override or modify the default
behaviors of widgets, since they are implemented with bindings.

This chapter assumes that you already know at least the basics about X event types,
keysyms, modifiers, and the fields in event structures. More information on these topics
can be found in any of several books that describe the Xlib programming interface.

An overview of the bind command

Thebi nd command is used to create, modduery and remove bindingsable
19.1 summarizes its syntax. This section illustrates the basic featiniesdfand later
sections go over the features in more detail.

Bindings are created with commands like the one below:

bind .entry <Control-d> {.entry delete insert}

199

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

200

Bindings

bi nd

bi nd

bi nd

bi nd

wi ndowSpec sequence scri pt
Arrangesfor scri pt to be executed each time the event sequence given by
sequence occurs in the window(s) given by wi ndowSpec. If abinding
already existsfor wi ndowSpec and sequence then it isreplaced. If
scri pt isan empty string then the binding for wi ndowSpec and
sequence isremoved, if thereis one.

wi ndowSpec sequence +scri pt
If thereisalready abinding forwi ndowSpec and sequence then appends
scri pt tothe script for the current binding; otherwise creates anew bind-
ing.

wi ndowSpec sequence
If thereisabinding for wi ndowSpec and sequence then returnsits
script. Otherwise returns an empty string.

wi ndowSpec
Returnsalist whose entries are al of the sequencesfor whichwi ndowSpec
has bindings.

t ker

ror nessage
Invoked by Tk when it encounters a Tcl error in an event handler such asa
binding. Message isthe error message returned by Tcl. Any result returned
by t ker r or isignored.

Table 19.1. A summary of thebi nd andt ker r or commands.

Note:

Thefirst argument to the command specifies the path name of the window that the binding
appliesto. It can also be awidget class name, in which case the binding appliesto all wid-
gets of that class (such bindings are called class bindings), or it canbeal | , in which case
the binding applies to all widgets. The second argument specifies a sequence of one or
more X events. In this exampl e the sequence specifies asingle event, which is a key-press
of the d character while the Cont r ol key isdown. The third argument may be any Tcl
script. The script in the exampleinvokes. ent r y’swidget command to delete the charac-
ter just after the insertion cursor.

After the command compl etes, the script will be invoked whenever Control-d istyped
in. ent ry. The binding can trigger any number of times. It remains in effect until
. ent ry isdeleted or the binding is explicitly removed by invoking bi nd with an empty
script:

bind .entry <Control-d> {}

A binding for a keystroke will only trigger if the input focusis set to the window for the
binding. See Chapter 21 for more information on the input focus.

Thebi nd command can also be used to retrieve information about bindings. If bi nd
isinvoked with an event sequence but no script then it returns the script for the given
event sequence:

bind .entry <Control-d>

DRAFT (3/11/93): Distribution Restricted

19.2 Event patterns 201

19.2

.entry delete insert
If bi nd isinvoked with asingle argument then it returns alist of all the bound event
sequences for that window or class:

bind .entry

<Control - Key- d>

bi nd Button

<Butt onRel ease- 1> <Button-1> <Any-lLeave> <Any-Enter>

The first example returned the bound sequences for . ent r y, and the second example
returned information about all of the class bindings for button widgets.

Event patterns

Event sequences are constructed out of basic units called event patterns, which Tk
matches against the stream of X eventsreceived by the application. An event sequence can
contain any number of patterns, but in practice most sequences only contain a single pat-
tern.

The simplest form for an event pattern consists of a printing character such asa or @
Thisform of pattern matches a key-press event for that character aslong as there are no
modifier keys pressed. For example,

bind .entry a {.entry insert insert a}
arranges for the character a to beinserted into . ent r y at the point of theinsertion cursor
whenever it istyped.

The second form for an event pattern is longer but more flexible. It consists of one or
more fields between angle brackets, with the following syntax:

<nmodi fier-nodifier-...-nodifier-type-detail >
White space may be used instead of dashes to separate the various fields, and most of the
fields are optional. The type field identifies the particular X event type, such as
KeyPr ess or Ent er (see Table 19.2 for alist of al the available types). For example,
the command

bind .x <Enter> {puts Hello!}
causes“Hel | o! " to be printed on standard output whenever the mouse cursor movesinto
widget . X.

For key and button events, the event type may be followed by a detail field that speci-
fiesaparticular button or key. For buttons, the detail isthe number of the button (1-5). For
keys, the detail isan X keysym. A keysym isatextual name that describes a particular key
on the keyboard, such as Back Space or Escape or conma. The keysym for al phanu-
meric ASCII characterssuch as“a’ or “A” or “2” isjust the character itself. Refer to your
X documentation for a complete list of keysyms.

DRAFT (3/11/93): Distribution Restricted

202 Bindings
Button, ButtonPress Expose Leave
But t onRel ease Focusln Map
Crculate FocusCut Property
Circul at eRequest Gavity Repar ent
Col or map Keynap Resi zeRequest
Configure Key, KeyPress Unmap
Confi gur eRequest KeyRel ease Visibility
Dest r oy MapRequest
Ent er Mot i on
Table 19.2. Namesfor event types. Some event types have multiple names, e.g. Key and
KeyPr ess.

If no detail field is provided, asin <KeyPr ess>, then the pattern matches any event
of the given type. If adetail field isprovided, asin <KeyPr ess- Escape>, then the pat-
tern only matches events for the specific key or button. If adetail is specified then you can
omit the event type: <Escape> isequivalent to <KeyPr ess- Escape>.

Note: The patterr<1> is equivalent ta<But t on- 1>, not<KeyPr ess- 1>.

The event type may be preceded by any number of modifiers each of which must be
one of the valuesin Table 19.3. Most of the modifiers are X modifier names, such as Con-
trol or Shift.If oneor more of these modifiers are specified then the pattern only
matches events that occur when the specified modifiers are present. For example, the pat-
tern <Met a- Cont r ol - d> requires that both the Meta and Control keys be held down
when d istyped, and <B1- But t on- 2> requires that button 1 already be down when but-
ton 2 ispressed. If no modifiers are specified then none must be present: <KeyPr ess- a>
will not match an event if the Control key is down.

If the Any modifier isspecified, it meansthat the state of unspecified modifiers should
be ignored. For example, <Any- a> will match a press of the“a” key even if button 1 is
down or the Meta key is pressed. <Any- B1- Mot i on> will match any mouse motion
event aslong as button 1 is pressed; other modifiers are ignored.

Thelast two modifiers, Doubl e and Tr i pl e, are used primarily for specifying dou-
ble and triple mouse clicks. They match a sequence of two or three events, each of which
matches the remainder of the pattern. For example, <Doubl e- 1> matches a double-click
of mouse button 1 with no modifiers down, and <Any- Tr i pl e- 2> matches any triple
click of button 2 regardless of modifiers. For aDoubl e or Tri pl e pattern to match, all
of the events must occur close together in time and without substantial mouse motion
between them.

DRAFT (3/11/93): Distribution Restricted

19.3 Sequences of events 203

Cont r ol Button4, B4 Modl, M2, Alt
Shi ft Button5, B5 Mod3, MB
Lock Any Mod4, M4
Buttonl, Bl Double Mod5, Mb

Button2, B2 Triple
Button3, B3 Mddl, ML, Mta, M

Table 19.3. Modifier names for event patterns. Multiple names are available for some modifiers;
for example, Mod1, ML, Met a, and Mare all synonyms for the same modifier.

19.3

Sequences of events

19.4

An event sequence consists of one or more event patterns optionally separated by white
space. For example, the sequence <Escape>a contains two patterns. It triggers when the
a key is pressed immediately after the Escape key.

A sequence need not necessarily match consecutive events. For example, the
sequence <Escape>a will match an event sequence consisting of a key-press on
Escape, arelease of Escape, and then a press of a; the release of Escape will be
ignored in determining the match. Tk ignores conflicting eventsin the input event stream
unlessthey are of type KeyPr ess or But t onPr ess. Thusif some other key is pressed
between the Escape and the a then the sequence won’t match. These same rules apply to
double events such as <Doubl e- 1>.

Conflict resolution

At most one binding will trigger for any given X event. If several bindings match the event
then the most specific binding is chosen and only its script is invoked. For example, sup-
pose there are bindings for <But t on- 1> and <Doubl e- But t on- 1> and button 1 is
clicked three times. The first button-press event will match only the <But t on- 1> bind-
ing, but the second and third presses will match both bindings. Since
<Doubl e- But t on- 1> ismore specific than <But t on- 1>, its script is executed on
the second and third presses. Similarly, <Escape>a is more specific than <a>, <Con-
t r ol - d> ismore specific than <Any- d> or <d>, and <d> is more specific than <Key-
Press>.

There may aso be a conflict among bindings with different window specifications.
For example, there might be abinding for a specific window, plus another binding for its
class, plus another for al | . When this occurs, any window-specific binding receives pref-
erence over any class binding and any class binding receives preference over any al |

DRAFT (3/11/93): Distribution Restricted

204

Bindings

Note:

19.5

binding. For example, if thereisan <Any- KeyPr ess> binding for awindow and a
<Ret ur n> binding for its class, pressing the return key will trigger the window-specific
binding, not the class binding.

The default behaviors for widgetseagstablished with class bindingeated by Tk during
initialization. You can modify the behavior of an individual widget ating window-
specific bindings that override the class bindings. Howereerhave to be caful in
doing this that you donhaccidentally override merbehavior than you intended. For
example, if you specify atAny- KeyPr ess> binding for a widget, it will override a
<Ret ur n> binding for the class, even though #tRet ur n> binding appears to be
mote specific. The solution is to duplicate #iet ur n> class binding for the widget.

Substitutions in scripts

Note:

If the script for a binding contains %characters then it is not executed directly. Instead, a
new script is generated by replacing each %character and the one that follows it with
information about the X event. The character following the %sel ects a specific substitution
to make. About 30 different substitutions are defined; see the reference documentation for
complete details. The following substitutions are the most commonly used ones:

U Substitute the x-coordinate from the event.

%y Substitute the y-coordinate from the event.

N Substitute the path name of the event window.

YA Substitute the 8-bit 1SO character value that correspondsto a

KeyPr ess or KeyRel ease event, or an empty string if the
event isfor akey like Shift that doesn’'t have an SO equiva
lent.

%0 Substitute the character %

For example, the following bindings implement a simple mouse tracker:

bind all <Enter> {puts "Entering %N}
bind all <Leave> {puts "Leaving %WV}
bind all <Mdtion> {puts "Muse at (%, %)"}

When Tk makes % substitutions @aits the script as an dinary string without any
special poperties. The normal quoting rules fal Tommands & not considexd, sd%
sequences will be substituted even if embedded in bracesoaded by backslashes. The
only way to pevent éosubstitution is to double tRécharacter The easiest way to avoid
problems with complex scripts and % substitutions is to keep the binding simple, for
example by putting the script in aggedue and having the binding invoke the@pedue
with arguments aated via % substitution.

DRAFT (3/11/93): Distribution Restricted

19.6 When are events processed? 205

19.6

When are events processed?

Note:

19.7

Tk only processes events at afew well-defined times. After a Tk application completesits
initialization it enters an event loogo wait for X events and other events such astimer and
file events. When an event occurs the event loop executes C or Tcl code to respond to that
event. Once the response has completed, control returns to the event loop to wait for the
next interesting event. Almost all events are processed from the top-level event loop. New
events will not be considered while responding to the current event, so there is no danger
of one binding triggering in the middle of the script for another binding. This approach
appliesto all event handlers, including those for bindings, those for the script options
associated with widgets, and others yet to be discussed, such as window manager protocol
handlers.

A few special commands such ast kwai t and updat e reinvoke the event loop
recursively, so bindings may trigger during the execution of these commands. You should
only invoke these commands at times when it is safe for bindings to trigger. Commands
that invoke the event loop are specially noted in their reference documentation; all other
commands complete immediately without re-entering the event loop.

Event handlers & always invoked at global level (as if the commaungl “evel #0”
were used), even if the event loop was invokem fit kwai t or updat e command

inside a pocedue. This means that global variablegalways accessible in event
handlers without invoking thgd obal command.

Background errors: tkerror

Itispossible for a Tcl error to occur while executing the script for abinding. These errors
are called backgound erors; when one occurs, the default action isfor Tk to print the
associated error message on standard output. However, this probably isn't very useful in
most cases. It isusually better to display the error message in a message window or dialog
box on the screen where the user can seeit. Thet ker r or command permits each appli-
cation to handle background errors in the best way for that application. When a back-
ground error occurs, Tk invokest ker r or with asingle argument consisting of the error
message. Thet ker r or command is not defined by Tk; presumably each application will
defineitsownt ker r or procedureto report errorsin away that makes sense for that
application. If t ker r or returns normally then Tk will assume it has dealt with the error
and it won't do anything elseitself. If t ker r or returns an error (e.g. because thereis no
t ker r or command defined) then Tk falls back on the default approach of printing the
message on standard output.

Thet ker r or procedureisinvoked not just for errorsin bindings, but for all other
errorsthat are returned to Tk at times when it has no-one else to return the errors to. For
example, menus and buttonscall t ker r or if an error isreturned by the script for amenu
entry or button; scrollbarscall t ker r or if aTcl error occurs while communicating with

DRAFT (3/11/93): Distribution Restricted

206

Bindings

19.8

the associated widget; and the window-manager interface callst ker r or if an error is
returned by the script associated with a window manager protocol.

Other uses of bindings

The binding mechanism described in this chapter applies to widgets. However, similar
mechanisms are available internally within some widgets. For example, canvas widgets
alow bindings to be associated with graphical items such as rectangles or polygons, and
text widgets allow bindings to be associated with ranges of characters. These bindings are
created using the same syntax for event sequences and %substitutions, but they are cre-
ated with the widget command for the widget and refer to the widget's internal objects
instead of windows. For example, the following command arranges for a message to be
printed whenever mouse button 1 is clicked over item 2 inacanvas. c:

.C bind 2 <ButtonPress-1> {puts Hello!}

DRAFT (3/11/93): Distribution Restricted

Chapter 20
The Sdection

20.1

Theselection is a mechanism for passing information between widgets and applications.
The user first selects one or more objects in a widget, for example by dragging the mouse
across a range of text or clicking on a graphical object. Once a selection has been made,
the user can invoke commands in other widgets that cause them to retrieve information
about the selection, such as the characters in the selected range or the name of the file con-
taining the selection. The widget containing the selection and the widget requesting it can
be in the same or ddrent applications. The selection is most commonly used to copy
information from one place to anothbut it can be used for other purposes as well, such
as setting a breakpoint at a selected line or opening a new window on a selected file.

X defines a standard mechanism for supplying and retrieving the selection and Tk
provides access to this mechanism withgbeect i on command. @ble 20.1 summa-
rizes thesel ecti on command. The rest of this chapter describes its features in more
detail. For complete information on the X selection protocol, refer to the@fitaet
Communications Convention Manual (ICCCM).

Selections, retrievals, and targets

X's selection mechanism allows for multiple selections to exist at once, with names like
“primary selection”, “secondary selection”, and so on. HowelMeisupports only the pri-
mary selection; Tk applications cannot retrieve or supply selections other than the primary
one and the term “selection” always refers to the primary selection in this book. At most
one widget has a primary selection at any given time on a given digyii@y a user

selects information in one widget, any selected information in any other widget is auto-

207

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

208

The Selection

sel ection clear w ndow

sel ection get ?target?

sel ecti on handl e wi ndow script 2 arget? ?ormat?

sel ecti on own i ndow? ?scri pt?

If there is a selection anywhere onwi ndow' s display, deselect it so that no
window owns the selection anymore.

Retrieve the value of the primary selection usingt ar get astheformin
which to retrieve it, and return the selection’s value as result. Tar get
defaultsto STRI NG

Creates a handler for selection requests such that scr i pt will be executed
whenever the primary selection is owned by wi ndowand someone attempts
toretrieveitintheform given by t ar get . Tar get defaultsto STRI NG
For mat specifies arepresentation for transmitting the selection to the
requester; it defaultsto STRI NG When scri pt isinvoked, two additional
numbers are appended to it, consisting of the starting offset and maximum
number of bytesto retrieve. Scri pt should return the requested range of
the selection; if it returns an error then the selection retrieval will be rejected.

Claims ownership of the selection for wi ndow; if some other window previ-
ously owned the selection, deselectsthe old selection. If scri pt is speci-
fied then it will be executed whenwi ndowis deselected. If neither wi ndow
nor scri pt isspecified, then the command returns the path name of the
window that currently owns the selection, or an empty string if no window in
this application owns the selection.

Table 20.1. A summary of thesel ect i on command.

matically deselected. It is possible for multiple disjoint objects to be selected simulta-
neously within awidget (e.g. three different itemsin alistbox or several different
polygons in a drawing window), but usually the selection consists of asingle object or a
range of adjacent objects.

When you retrieve information about the selection, you can ask for any of severa dif-
ferent kinds of information. The different kinds of information are referred to asretrieval
targets. The most common target is STRI NG In this case the contents of the selection are
returned as a string. For example, if text is selected then aretrieval with target STRI NG
will return the contents of the selected text; if graphics are selected then aretrieval with
target STRI NGwill return some string representation for the selected graphics. If the
selection isretrieved with target FI LE_NAVE then the return value will be the name of
the file associated with the selection. If target L1 NE is used then the return value will be
the number of the selected line within its file. There are many targets with well-defined
meanings; refer to the X ICCCM for more information.

Thecommandsel ecti on get retrievesthe selection. The target may be specified
explicitly or it may be left unspecified, in which case it defaultsto STRI NG. For example,
the following commands might be invoked when the selection consists of afew words on
one line of afile containing the text of Shakespeare’'s Romeo and Juliet;

DRAFT (3/11/93): Distribution Restricted

20.2 Locating and clearing the selection 209

20.2

sel ection get
star-crossed | overs

sel ection get FILE NAME
ronmeoJul i et

sel ection get LINE

6

These commands could be issued in any Tk application on the display containing the
selection; they need not be issued in the application containing the selection.

Not every widget supports every possible selection target. For example, if the infor-
mation in awidget isn’t associated with afile then the FI LE_NAME target will not be
supported. If you try to retrieve the selection with an unsupported target then an error will
be returned. Fortunately, every widget is supposed to support retrievals with target TAR-
CETS; suchretrievalsreturn alist of al the target forms supported by the current selection
owner. You can use the result of a TARGETS retrieval to pick the most convenient avail-
able target. For example, the following procedure retrieves the selection as Postscript as
possible, otherwise as an unformatted string:

proc getSelection {} {
set targets [sel ection get TARGETS]
if {[lsearch $targets POSTSCRI PT] >= 0} {
return [selection get POSTSCRI PT]

}
sel ection get STRING

Locating and clearing the selection

Tk provides two mechanisms for retrieving information about who owns the selection.
Thecommand sel ecti on own (with no additional arguments) will check to seeif the
selection is owned by awidget in the invoking application. If so it will return the path
name of that widget; if thereis no selection or it is owned by some other application then
sel ecti on own will return an empty string.

The second way to locate the selection is with the retrieval targets APPLI CATI ON
and W NDOW NANME. These targets are both implemented by Tk and are automatically
available whenever the selection isin a Tk application. The command

sel ection get APPLI CATI ON

returns the name of the Tk application that owns the selection (in aform suitable for use
with the send command, for example) and

sel ecti on get W NDOW NAME

DRAFT (3/11/93): Distribution Restricted

210

The Selection

20.3

returns the path name of the window that owns the selection. These commands will work
only if the owning application is based on Tk. If the application that owns the selection
isn't based on Tk then it probably does not support the APPLI CATI ONand W N-
DOW NAME targets and thesel ect i on get command will return an error. These com-
mands will aso return errorsif thereis no selection.

The command

sel ection clear
will clear out any selection on the display of the invoking application. It works regardless
of whether the selection isin the invoking application or some other application on the
same display. The following script will clear out the selection only if it isin the invoking
application:

sel ection clear
}

Supplying the selection with Tcl scripts

The sections above described Tk's facilities for retrieving the selection; this section
describes how to supply the selection. The standard widgets like entries and texts already
contain C code that supplies the selection, so you don’t usually have to worry about it
when writing Tcl scripts. However, it is possible to write Tcl scripts that implement new
targets or that provide the complete supply-side protocol, and this section describes how to
doit. Thisfeature of Tk is seldom used so you may wish to skip over this material until
you need it.
The protocol for supplying the selection has three parts:

1. A widget must claim ownership of the selection. This deselects any previous selection

and typically redisplays the selected material in a highlighted fashion.

2. The selection owner must respond to retrieval requests by other widgets and applica-
tions.

3. The owner may request that it be notified when it is desel ected. Widgets typically
respond to deselection by eliminating the highlights on the display.

The paragraphs bel ow describe two scenarios. Thefirst scenario just adds anew target to a
widget that already has selection support, so it only deals with the second part of the pro-
tocol. The second scenario implements compl ete sel ection support for a group of widgets
that didn’t previously have any; it deals with all three parts of the protocol.

Suppose that you wish to add a new target to those supported for a particular widget.
For example, text widgets contain built-in support for the STRI NGtarget but they don’t
automatically support the FI LE_NANE target. You could add support for FI LE_NAME
retrievals with the following script:

DRAFT (3/11/93): Distribution Restricted

20.3 Supplying the selection with Tcl scripts 211

selection handle .t getFile FILE NAME
proc getFile {offset maxBytes} ({
gl obal fil eNane
set |last [expr $offset+$maxBytes- 1]
string range $fil eNanme $of fset $l ast
}
This code assumes that the text widget isnamed . t and that the name of its associated file
isstored in aglobal variablenamed f i | eName. Thesel ecti on handl e command
tells Tk to invoke get Fi | e whenever . t owns the selection and someone attemptsto
retrieve it with target FI LE_NAME. When such aretrieval occurs, Tk takes the specified
command (get Fi | e in this case) appends two additional numerical arguments, and
invokes the resulting string as a Tcl command. In this example acommand like

getFile 0 4000

will result. The additional arguments identify a sub-range of the selection by itsfirst byte
and maximum length, and the command must return this portion of the selection. If the
reguested range extends beyond the end of the selection, then the command should return
everything from the given starting point up to the end of the selection. Tk takes care of
returning the information to the application that requested it. In most cases the entire
selection will be retrieved in one invocation of the command, but for very large selections
Tk will make several separate invocations so that it can transmit the selection back to the
reguester in manageabl e pieces.

The above example simply added a new target to awidget that already provided some
built-in selection support. If selection support is being added to a widget that has no built-
in support at al, then additional Tcl code is needed to claim ownership of the selection and
to respond to deselections. For example, suppose that there is a group of three radio but-
tonsnamed . a, . b, and . ¢ and that the buttons have already been configured with their
-vari abl e and - val ue optionsto store information about the selected button in aglo-
bal variable named st at e. Now suppose that you want to tie the radio buttonsto the
selection, so that (a) whenever a button becomes selected it claims the X selection, (b)
selection retrievals return the contents of st at e, and (c) when some other widget claims
the selection away from the buttons then st at e iscleared and all the buttons become
deselected. The following code implements these features:

sel ection handl e .a getVal ue STRI NG
proc getVal ue {offset maxBytes} {
gl obal state
set last [expr $offset+$maxByt es- 1]
string range $state $offset $l ast
}
foreach w{.a .b .c} {
$w config -comand {sel ection own .a sel Gone}

proc sel Gone {} {

DRAFT (3/11/93): Distribution Restricted

212

The Selection

gl obal state
set state {}
}

Thesel ecti on handl e command and the get Val ue procedure are similar to the
previous example: they respond to STRI NG selection requests for . a by returning the
contents of the st at e variable. Thef or each loop specifiesa- comand option for
each of the widgets. This causesthesel ecti on own command to be invoked when-
ever the user clicks on any of the radio buttons, and thesel ecti on own command
claims ownership of the selection for widget . a (. a will own the selection regardless of
which radio button gets selected and it will return st at e in response to selection
requests). Thesel ecti on own command also specifies that procedure sel Gone
should be invoked whenever the selection is claimed away by some other widget. Sel -
CGone setsst at e to an empty string. All of the radio buttons monitor st at e for
changes, so when it gets cleared the radio buttonswill al deselect themselves.

DRAFT (3/11/93): Distribution Restricted

Chapter 21
Thelnput Focus

21.1

At any given time one window of an application is designated dsibefocus window,

or focus window for short. All keystrokes received by the application are directed to the
focus window and they are processed according to its event bindings. This chapter
describes Tlef ocus command, which is used to control the input focasld 21.1
summarizes the syntax of thecus command. The focus window only determines what
happens once a keystroke event arrives at a particular application; it does not determine
which of the applications on the display receives keystrokes. The selection of a focus
application is made by the window manager

Focus model: explicit vs. implicit

There are two possible ways of handling the input focus, which are knowni emplilcet
andexplicit models. In the implicit model the focus follows the mouse: keystrokes are
directed to the window under the mouse pointer and the focus window changes implicitly
when the mouse moves from one window to anothahe explicit model the focus win-

dow is set explicitly and doegdrehange until it is explicitly reset; mouse motions do not
change the focus.

Tk implements the explicit focus model, for several reasons. First, the explicit model
allows you to move the mouse cursor out of the way when you're typing in a window;
with the implicit model you'd have to keep the mouse in the window you're typing to.
Second, and more important, the explicit model allows an application to change the focus
window without the user moving the mouse. For example, when an application pops up a
dialog box that requires type-in (e.g. one that prompts for a file name) it can set the input

213

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

214

The Input Focus

focus

focus w ndow

focus default 2w ndow?

focus none

Returns the path name of the application’s focus window, or an empty string
if thereis no focus window.

Sets the application’s focus window towi ndow.

If Wi ndowis specified then it becomes the default focus window, which will
receive the input focus whenever the focus window is deleted. In this case
the command returns an empty string. If Wi ndowis specified asnone, then
there will be no default focus window. If wi ndowis omitted then the com-
(rjne?ndl returns the current default focus window, or none if thereisno

ault.

Clears the focus window.

Table 21.1. A summary of thef ocus command.

21.2

focus to the appropriate window in the dial og without you having to move the mouse, and
it can move the focus back to its original window when you' re finished with the dialog
box. This allows you to keep your hands on the keyboard. Similarly, when you' re typing
in aform the application can move the input focus to the next entry in the form each time
you type atab, so that you can keep your hands on the keyboard and work more efficiently.
Lastly, if you want an implicit focus model then you can always achieve it with event
bindings that change the focus each time the mouse cursor enters a new window.

Tk applications don’t need to worry about the input focus very often because the
default bindings for text-oriented widgets already take care of the most common situa-
tions. For example, when you click button 1 over an entry or text widget, the widget will
automatically make itself the focus window. As application designer, you only need to set
the focus in cases like those in the previous paragraph where you want to move the focus
among the windows of your application to reflect the flow of work.

Setting the input focus

To set the input focus, invoke thef ocus command with awidget name as argument:
focus .dialog.entry

From this point on, all keystrokes received by the application will be directed to

. di al og. ent ry and the previous focus window will no longer receive keystrokes. The

new focus window will display some sort of highlight, such as a blinking insertion cursor,

toindicate that it has the focus and the previous focus window will stop displaying its

highlight.

DRAFT (3/11/93): Distribution Restricted

21.3 Clearing the focus 215

Here is ascript that implements tabbing among four entriesin aform:

set tabList {.formel .forme2 .forme3 .form e4}
foreach w $tabList {
bi nd $w <Tab> {tab $tabLi st}

proc tab list {
set i [lsearch $list [focus]]

incr i
if {$i >=[llength $list]} {
set i O

focus [lindex $list $i]

}
This script assumes that the four entry windows have already been created. It uses the
variablet abLi st to describe the order of traversal among the entries and arranges for
the procedure t ab to be invoked whenever atab istyped in any of the entries. Tab
invokesf ocus with no arguments to determine which window has the focus, finds where
thiswindow isin thelist that givesthe order of tabbing, and then setsthe input focusto the
next window in thelist. The proceduret ab could be used for many different formsjust by
passing it adifferent | i st argument for each form. The order of focussing can also be
changed at any time by changing the value of thet abLi st variable.

21.3 Clearing the focus

The command f ocus none clears the input focus for the application. Once this com-
mand has been executed, keystrokes for the application will be discarded.

21.4 The default focus

When the focus window is deleted, Tk automatically sets the input focus for the applica
tion to awindow called the default focus window. The default focus window isinitially
none, which means that there will be no focus window after the focus window is deleted
and keystrokes will be discarded until the focus window is set again.

Thef ocus def aul t command can be used to specify a default focus window and
to query the current default:

f ocus defaul t
none

focus default .entry
focus default

DRAFT (3/11/93): Distribution Restricted

216 The Input Focus
.entry
Once this script has been completed, . ent ry will receive the input focus whenever the
input focus window is deleted.
21.5 Keyboard accelerators

Applicationswith keyboard accelerators (e.g. they allow you to type Cont r ol +s to save
thefile or Cont r ol +q to quit the application) require special attention to bindings and
the input focus. First, the accel erator bindings must be present in every window where you
want them to apply. For example, suppose that an editor has a main text window plus sev-
eral entry windows for searching and replacement. You will create bindings for accelera-
torslike Cont r ol +q in the main text window, but you will probably want most or all of
the bindings to apply in the auxiliary windows also, so you'll have to define the accelera
tor bindings in each of these windows too.

In addition, an application with keyboard accel erators should never let the focus
become none, since that will prevent any of the accelerators from being processed. If no
other focus window is available, | suggest setting the focus to the main window of the
application; of course, you'll have to define accelerator bindings for . so that they are
available in this mode. In addition, | recommend setting the default focuswindow to. or
some other suitable window so that the focusisn't lost when dialog boxes and other win-
dows are deleted.

DRAFT (3/11/93): Distribution Restricted

Chapter 22
Window Managers

For each display running the Xilldow System there is a special process calledithe
dow manager. The window manager is separate from the X display server and from the
application processes using the displye main function of the window manager is to
control the arrangement of all the top-level windows on each screen. In this respect it is
similar to the geometry managers described in Chapters 17 and 18 except that instead of
managing the internal windows within an application it manages the top-level windows of
all applications. The window manager allows each application to request particular loca-
tions and sizes for its top-level windows, which can be overridden interactively by users.
Window managers also serve several other purposes besides geometry management: they
add decorative frames around top-level windows; they allow windows to be iconified and
deiconified; and they notify applications of certain events, such as user requests to destroy
the window

X allows for the existence of many féifent window managers that implemenfefif
ent styles of layout, provide @&fent kinds of decoration and icon management, and so
on. Only a single window manager runs for a display at any given time, and the user gets
to choose which one. In order to allow any application to work smoothly with any window
managerX defines a protocol for the interactions between applications and window man-
agers. The protocol is defined as part of the 18temt Communication Conventions
Manual (ICCCM). Vith Tk you use themcommand to communicate with the window
manager; Tk implements tlencommand using the ICCCM protocols so that any Tk-
based application should work with any window man@ables 22.1 and 22.2 summarize
thewmcommand.

217

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

218 Window Managers

wm aspect wi ndow ?Thin yThin xFat yFat?
Set or query wi ndow's aspect ratio. If an aspect ratio is specified, it con-
strains interactive resizes so that wi ndow's width/height will be at least as
great asx Thi n/yThi n and no greater than xFat /yFat .

wm client wi ndow ame?
Set or query the WM_CLIENT_MACHINgroperty for wi ndow, which
gives the name of the machine on whichwi ndow's application is running.

wm command wi ndow val ue?
Set or query the WM_COMMANDperty for wi ndow;, which should contain
the command line used to initiatew ndow's application.

wm deiconify wi ndow
Arrange for window to be displayed in normal fashion.

wm focusmodel w ndow ?nodel ?
Set or query the focus model for wi ndow. Model must beactive or
passi ve.

wm geometry wi ndow val ue?
Set or query the requested geometry for window. Val ue must have the form
=wi dt hxhei ght x y (any of =, wi dt hxhei ght,or x y canbe
omitted).

wm group wi ndow ? eader ?
Set or query the window group that wi ndowbelongsto. Leader must be
the name of atop-level window, or an empty string to removew ndowfrom
its current group.

wm iconbitmap wi ndow %bi t map?
Set or query the bitmap for wi ndow'sicon.

wm iconify wi ndow
Arrange for wi ndowto be displayed iniconic form.

wm iconmask w ndow ?bi t map?
Set or query the mask bitmap for Wi ndow'sicon.

wm iconname window ?string ?
Set or query the string to be displayed inwi ndow sicon.

wm iconposition wi ndow ?x y?
Set or query the hints about where on the screen to display wi ndow'sicon.

wm iconwindow W ndow 2 con?
Set or query the window to use asicon for wi ndow: | con must be the path
name of atop-level window.

wm maxsize w ndow M dt h hei ght ?
Set or query the maximum permissible dimensions for wi ndow during inter-
active resize operations.

wm minsize wi ndow 2 dt h hei ght ?
Set or query the minimum permissible dimensions for wi ndow during inter-
active resize operations.

Table 22.1. A summary of thewmcommand. In all of these commandswi ndow must be the name
of atop-level window. Many of the commands, such aswm aspect or wm group , are used to
set and query various parameters related to window management. For these commands, if the
parameters are specified as null strings then the parameters are removed completely, and if the
parameters are omitted then the command returns the current settings for the parameters.

DRAFT (3/11/93): Distribution Restricted

22.1 Window sizes 219

wm overri deredirect w ndow ?bool ean?
Set or query the override-redirect flag for vi ndow
wm posi ti onfrom w ndow whon?
Set or query the source of the position specification for wvi ndow Whommust
be pr ogr amor user.
wm pr ot ocol w ndow ?protocol ? ?script?
Arrangefor scri pt to be executed whenever the window manager sends a
message to wi ndow with the given pr ot ocol . Pr ot ocol must bethe
name of an atom for awindow manager protocol, such as
WV DELETE_W NDOWWM SAVE_YOURSELF, or WW TAKE_FOCUS. If
scri pt isan empty string then the current handler for protocol isdeleted. If
scri pt isomitted then the current script for pr ot ocol isreturned (or an
empty string if thereis no handler for pr ot ocol). If both pr ot ocol and
scri pt areomitted then the command returns alist of al protocols with
handlers defined for vi ndow.
wm si zef rom wi ndow whonf?
Set or query the source of the size specification for wi ndow Whommust be
pr ogr amor user.
wm st ate wi ndow
Returns the current state of wi ndow:. nor mal , i coni c, or wi t hdr awn.
wmtitle wi ndow ?string?
Set or query thetitle string to display in the decorative border for wi ndow
wm transi ent w ndow ?naster?
Set or query the transient status of wi ndow. Mast er must be the name of a
top-level window on whose behalf wi ndowisworking as atransient.
wm wi t hdraw wi ndow
Arrange for wi ndow not to appear on the screen at al, either in normal or
iconic form.

22.1 Window sizes

If a Tk application doesn’'t use the wmcommand, Tk will communicate with the window
manager automatically on the application’s behalf so that its top-level windows appear on
the screen. By default each top-level window will appear inits“natural” size, which isthe
size it requested using the normal Tk mechanisms for geometry management. Tk will for-
ward the requested size on to the window manager and most window managerswill honor
the request. If the requested size of atop-level window should change then Tk will for-
ward the new size on to the window manager and the window manager will resize the win-
dow to correspond to the latest request. By default the user will not be able to resize
windows interactively: window sizes will be determined solely by their requested sizes as
computed internally.

If you want to allow interactive resizing then you must invoke at least one of the wm
m nsi ze and wm maxsi ze commands, which specify arange of acceptable sizes. For
example the commands

DRAFT (3/11/93): Distribution Restricted

220

Window Managers

22.2

wm ninsize .x 100 50

wm naxsi ze . x 400 150
will allow. x to be resized but constrain it to be 100 to 400 pixels wide and 50 to 150 pix-
els high. If the command

wmmnsize .x 1 1

isinvoked then there will effectively be no lower limit on the size of . x. If you set amin-
imum size without a maximum size (or vice versa) then the other limit will be uncon-
strained. You can disable interactive resizing again by clearing all of the size bounds:

wm ninsize .x {} {}

wm mexsi ze . x {} {}
In addition to constraining the dimensions of awindow you can also constrain its
aspect ratio (width divided by height) using thewm aspect command. For example,

wm aspect .x 1 341

will tell the window manager not to let the user resize the window to an aspect ratio less
than 1/3 (window threetimes astall asitiswide) or greater than 4 (four timesaswide asit
istall).

If the user interactively resizes atop-level window then the window’s internally
requested size will be ignored from that point on. Regardless of how the internal needs of
the window change, its size will remain as set by the user. A similar effect occursif you
invoke thewm geonet r y command, asin the following example:

wm geonetry . x 300x200

This command forces . x to be 300 pixels wide and 200 pixels high just asif the user had
resized the window interactively. Theinternally requested sizefor . x will beignored once
the command has completed, and the size specified in thewm geonet r y command over-
rides any size that the user might have specified interactively (but the user can resize the
window again to override the sizein thewm geonet r y command). The only difference
between thewm geonet r y command and aninteractiveresizeisthat wn geonetry is
not subject to the constraints specified by wm mi nsi ze, wn maxsi ze, and wmn
aspect .

If you would like to restore awindow to its natural size you can invokewmn georre-
t ry with an empty geometry string:

wm geonetry . x {}

This causes Tk to forget any size specified by the user or by wm geonet ry, so thewin-
dow will return to the size it requested internally.

Gridded windows

In some cases it doesn’t make sense to resize awindow to arbitrary pixel sizes. For exam-
ple, consider the application in Figure 22.1. When the user resizes the top-level window

DRAFT (3/11/93): Distribution Restricted

22.2 Gridded windows 221

|| Berkeley Introduction | .| |||
File Hglpj

Berkeley Introduction =] 5] Berkeley is internationally £ |

noted for its academic

Berkeley iz internationally noted for = 104 members of the National
its academic excellence. Its faculty I academy of Sciences, 61
includes 8 Mobel laureates, 104 members

of the National Academy of Sciences, &1 |=

members of the National &cademy of nore Guggenhein Fellows and
Engineering, =nd more Guggenheim Fellows Presidential Young

and Presidential Young Investigators Investigators than there are =
than there are at any other university at any other university in the
in the country., In a3 recent national country. In a recent national
survey, Berkeley was ranked the hest survey, Berkeley was ranked
overall graduate institution in the L the hest overall graduate

United States, with 30 of its 32 2 institution in the United

He_lpi excellence. Its faculty
T includes 8§ Nobel laureates,

members of the National
Academy of Engineering, and

1= States, with 30 of its 32

graduate departments ranked
@ | within the top 10.

(b)

Figure 22.1. Anexample of gridded geometry management. If the user interactively resizesthe
window from the dimensionsin (a) to those in (b), the window manager will round off the
dimensions so that the text widget holds an even number of charactersin each dimension. This
figure shows decorative borders as provided by the mvmwindow manager.

the text widget changes size in response. Ideally the text widget should always contain an
even number of charactersin each dimension, and sizes that result in partial characters
should be rounded off.

Gridded geometry management accomplishes this effect. When gridding is enabled
for atop-level window its dimensions will be constrained to lie on an imaginary grid. The
geometry of the grid is determined by one of the widgets contained in the top-level win-
dow (e.g. the text widget in Figure 22.1) so that the widget always holds an integral num-
ber of itsinternal objects. Usually the widget that controls the gridding is a text-oriented
widget such as an entry or listbox or text.

To enable gridding, set the - set gri d option to 1 in the controlling widget. The fol-
lowing code was used in the example in Figure 22.1, where the text widget is. t :

.t configure -setgrid 1
This command has several effects. First, it automatically makes the main window resiz-
able, evenif nowm m nsi ze or wn maxsi ze command has been invoked. Second, it
constrains the size of the main window so that . t will always hold an even number of
charactersin itsfont. Third, it changes the meaning of dimensions used in Tk. These
dimensions now represent grid units rather than pixels. For example, the command

DRAFT (3/11/93): Distribution Restricted

222

Window Managers

Note:

22.3

wm geonetry . 50x30

will set the size of the main window so that . t is50 characters wide and 30 lines high,
and dimensions in thewm ni nsi ze and wm maxsi ze commands will also be grid
units. Many window managers display the dimensions of awindow on the screen while it
is being resized; these dimensions will given in grid units too.

In order for gridding to work correctly you must have configured the internal geometry
management of the application so that the controlling window stretches and shrinksin

response to changes in the size of the top-level window , e.g. by packing it with the
- expand optionsettol and-fi | | tobot h.

Window positions

22.4

Controlling the position of atop-level window is simpler than controlling its size. Users
can always move windows interactively, and an application can also move its own win-
dows using thewm geonet r y command. For example, the command

wm geonetry .x +100+200

will position . x so that its upper-left corner is at pixel (100,200) on the display. If either of
the + charactersisreplaced with a- then the coordinates are measured from the right and
bottom sides of the display. For example,

wm geonetry .x -0-0
positions. x at the lower-right corner of the display.

Window states

At any given time each top-level window isin one of three states. In the normal or de-ico-
nified state the window appears on the screen. In the iconified state the window does not
appear on the screen, but asmall icon is displayed instead. In the withdrawn state neither
the window nor itsicon appears on the screen and the window isignored completely by
the window manager.

New top-level windows start off in the normal state. You can use the facilities of your
window manager to iconify awindow interactively, or you can invokethewm i coni fy
command within the window’s application, for example

wmiconify .Xx
If youinvokewm i coni f y immediately, before the window first appears on the screen,
then it will start off in the iconic state. The command wm dei coni f y causes awindow
to revert to normal state again.

The command wm wi t hdr aw places awindow in the withdrawn state. If invoked
immediately, before awindow has appeared on the screen, then the window will start off
withdrawn. The most common use for this command is to prevent the main window of an

DRAFT (3/11/93): Distribution Restricted

22.5 Decorations 223

22.5

application from ever appearing on the screen (in some applications the main window
serves no purpose: the application presents a collection of windows any of which can be
deleted independently from the others; if one of these windows were the main window,
deleting it would delete all the other windows too). Once awindow has been withdrawn, it
can be returned to the screen with either wm dei coni fy orwm i coni fy.
Thewm st at e command returns the current state for awindow:

wmiconify .x

wm state . Xx

iconic

Decorations

Note:

22.6

When awindow appears on the screen in the normal state, the window manager will usu-
ally add a decorative frame around the window. The frame typically displays atitle for the
window and contains interactive controls for resizing the window, moving it, and so on.
For example, the window in Figure 22.1 was decorated by the mvmwindow manager.

Thewm ti t | e command alows you to set thetitle that's displayed awindow’s dec-
orative frame. For example, the command

wmtitle . "Berkel ey Introduction"
was used to set the title for the window in Figure 22.1.

The wmcommand provides severa options for controlling what is displayed when a
window isiconified. First, you can use thewm i connane command to specify atitleto
display in the icon. Second, some window managers allow you to specify a bitmap to be
displayed intheicon. Thewm i conbi t map command allows you to set this bitmap, and
wm i connmask allows you to create non-rectangular icons by specifying that certain bits
of theicon are transparent. Third, some window managers allow you to use one window
astheicon for another; wm i conwi ndowwill set up such an arrangement if your win-
dow manager supportsit. Finally, you can specify a position on the screen for the icon
withthewm i conposi ti on command.

Almost all window managers support wm i connane andwm i conposi ti on but
fewer support wm i conbi t map and almost no window manager s support wm

i conwi ndowvery well. Don't assume that these features work until you' ve tried them
with your own window manager.

Window manager protocols

There are times when the window manager needs to inform an application that an impor-
tant event has occurred or is about to occur so that the application can do something to
deal with the event. In X terminology, these events are called window manager protocols.

DRAFT (3/11/93): Distribution Restricted

224

Window Managers

22.7

The window manager passes an identifier for the event to the application and the applica-
tion can do what it likes in response (including nothing). The two most useful protocols
aeWM_DELETE_WINDGWI WM_SAVE_YOURSEOMe window manager invokes
the WM_DELETE_WIND@Wtocol when it wants the application to destroy the window
(e.g. because the user asked the window manager to kill the window). The
WM_SAVE_YOURSEpfotocoal isinvoked when the X server is about to be shut down or
the window is about to be lost for some other reason. It gives the application a chance to
save its state on disk before its X connection disappears. For information about other pro-
tocols, refer to ICCCM documentation.

Thewm protocol command arranges for a script to be invoked whenever a partic-
ular protocol istriggered. For example, the command

wm protocol . WM_DELETE_WINDOW {
puts stdout "I don’t wish to die"
}

will arrange for amessage to be printed on standard output whenever the window manager
asks the application to kill its main window. In this case, the window will not actually be
destroyed. If you don't specify ahandler for WM_DELETE_WINDQNgn Tk will destroy
the window automatically. WM_DELETE_WINDQO%the only protocol where Tk takes
default action on your behalf; for other protocols, like WM_SAVE_YOURSELtiething
will happen unless you specify an explicit handler.

Special handling: transients, groups, and override-redirect

The window manager protocols allow you to request three kinds of special treatment for
windows. First, you can mark atop-level window astransient with acommand like the
following:

wm transient .x .
Thisindicates to the window manager that .x isa short-lived window, such as adialog
box, working on behalf of the application’s main window. The last argument to wm
transient (“. " inthe example) isreferred to as the master for the transient window.
The window manager may treat transient windows differently e.g. by providing less deco-
ration or by iconifying and deiconifying them whenever their master isiconified or deico-
nified.

In situations where agroup of long-lived windows works together you can usethewm
group command to tell the window manager about the group. The following script tells
the window manager that the windows .topl , .top2 ,.top3 ,and.top4 areworking
together as agroup, and .top1l isthe group leader:

foreach i {.top2 .top3 .top4} {
wm group $i .topl
}

DRAFT (3/11/93): Distribution Restricted

22.8 Session management 225

22.8

The window manager can then treat the group as a unit, and it may give special treatment
to the leader. For example, when the group leader isiconified, al the other windowsin the
group might be removed from the display without displaying icons for them: the leader’s
icon would represent the whole group. When the leader’sicon is deiconfied again, all the
windowsin the group might return to the display also. The exact treatment of groupsisup
to the window manager, and different window managers may handle them differently. The
leader for a group need not actually appear on the screen (e.g. it could be withdrawn).

In some extreme casesit isimportant for atop-level window to be completely ignored
by the window manager: no decorations, no interactive manipulation of the window via
the window manager, no iconifying, and so on. The best example of such awindow isa
pop-up menu. In these cases, the windows should be marked as override-redirect using a
command like the following:

wm overri deredirect .popup
This command must be invoked before the window has actually appeared on the screen.

Session management

22.9

The wmcommand provides two options for communicating with session managers: wm
cl i ent andwm conmmand. These commands pass information to the session manager
about the application running in the window; they are typically used by the session man-
ager to display information to the user and to save the state of the session so that it can be
recreated in the future. Wn cl i ent identifies the machine on which the application is
running, and wm conmmand identifies the shell command used to invoke the application.
For example,

wmclient . sprite. berkel ey. edu
wm application . {browse /usr/local/bin}

indicates that the application is running on the machinespri t e. ber kel ey. edu and
was invoked with the shell command “br owse /usr /| ocal / bi n”.

A warning about window managers

Although the desired behavior of window managers is supposedly described in the X
|CCCM document, the ICCCM is not always clear and no window manager that | am
aware of implements everything exactly as described in the ICCCM. For example, the
mamwindow manager doesn’'t always deal properly with changesin the minimum and
maximum sizes for windows after they’ ve appeared on the screen, and the t wmwindow
manager treats the aspect ratio backwards; neither window manager positionswindows on
the screen in exactly the places they request. Tk tries to compensate for some of the defi-
ciencies of window managers (e.g. it checks to see where the window manager puts awin-

DRAFT (3/11/93): Distribution Restricted

226

Window Managers

dow and if it'sthe wrong place then Tk repositionsit again to compensate for the window
manager’s error), but it can’t compensate for al the problems.

One of the main sources of trouble is Tk’s dynamic nature, which allows you to
change anything anytime. Almost all applications (except those based on Tk) set al the
information about awindow before it appears on the screen and they never change it after
that. Because of this, window manager code to handle dynamic changes hasn’t been
debugged very well. You can avoid problems by setting as much of the information as
possible before the window first appears on the screen and avoiding changes.

DRAFT (3/11/93): Distribution Restricted

Chapter 23
The Send Command

23.1

The selection mechanism described in Chapter 20 provides a simple way for one applica-
tion to retrieve data from another application. This chapter describgemitlecommand,

which provides a more powerful form of communication between applicatidtis. W

send, any Tk application can invoke arbitrargl Bcripts in any other Tk application on

the display; these commands can not only retrieve information but also take actions that
modify the state of the tget application. dble 23.1 summarizeend and a few other
commands that are useful in conjunction with it.

Basics

To usesend, all you have to do is give the name of an application aradl scfiipt to exe-
cute in the application. For example, consider the following command:

send tgdb {break tkButton.c 200}

The first agument tosend is the name of the tget application (see Section 23.3 below
for more on application nhames) and the secogdraent is a @l script to execute in that
application. Tk locates the named application (an imaginarpased version of thgdb
debugger in this case), forwards the script to that application, and arranges for the script to
be executed in the applicatigrinterpreterin this example the script sets a breakpoint at a
particular line in a particular file. The result or error generated by the script is passed back
to the originating application and returned byslesd command.

Send is synchronous: it doegréomplete until the script has been executed in the
remote application and the result has been returned. While waiting for the remote applica-

227

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

228

The Send Command

send appNanme arg ?arg ..?

Concatenates all the ar g’s with spaces as separators, then executes the
resulting script in the interpreter of the application given by appNane. The
result of that execution is returned as the result of the send command.

wi nfo interps

wi nfo nane .

Returns alist whose elements are the names of all the applications available
on the display containing the application’s main window.

Returns the name of the current application, suitable for useinsend com-
mands issued by other applications.

Table 23.1. A summary of send and related commands.

23.2

tion to respond, send will defer the processing of X events, so the application will not
respond to its user interface during thistime. Once the send command completes and the
application returns to normal event processing, any deferred events will be processed. A
sending application will respond to send requests from other applications while waiting
for itsown send to complete. This means, for example, that the target of the send can
send a command back to the initiator while processing the script, if that is useful.

Hypertools

| hope that send will enable anew kind of small re-usable application that | call hyper-
tools. Many of today’s windowing applications are monoliths that bundle several different
packages into a single program. For example, debuggers often contain editors to display
the source files being debugged, and spreadsheets often contain charting packages or com-
muni cation packages or even databases. Unfortunately, each of these packages can only be
used from within the monolithic program that containsit.

With send each of these packages can be built as a separate stand-al one program.
Related programs can communicate by sending commands to each other. For example, a
debugger can send a command to an editor to highlight the current line of execution, or a
spreadshest can send a script to a charting package to chart a dataset derived from the
spreadsheet, or amail reader can send a command to a multi-media application to play a
video clip associated with the mail. With this approach it should be possible to re-use
existing programsin many unforeseen ways. For example, once a Tk-based audio-video
application becomes available, any existing Tk application can become a multi-media
application just by extending with scripts that send commands to the audio-video applica
tion. Theterm “hypertools’ reflects this ability to connect applications together in interest-
ing ways and to re-use them in ways not foreseen by their original designers.

DRAFT (3/11/93): Distribution Restricted

23.3 Application names 229

23.3

When designing Tk applications, | encourage you to focus on doing one or afew
things well; don’t try to bundle everything in one program. Instead, provide different func-
tionsin different hypertools that can be controlled viasend and re-used independently.

Application names

23.4

In order to send to an application you have to know its name. Each application on the dis-
play has a unique name, which it can choose in any way it pleases aslong asit is unique.
In many cases the application name isjust the name of the program that created the appli-
cation. For example, wi sh will use the application namew sh by default; or, if it isrun-
ning under the control of a script file then it will use the name of the script file asits
application name. In programslike editors that are typically associated with adisk file, the
application name typically has two parts: the name of the application and the name of the
file or object on which it is operating. For example, if an editor named nx isdisplaying a
filenamedt k. h, then the application’s nameislikely tobe“mx t k. h”.

If an application requests a name that is aready in use then Tk adds an extra number
to the end of the new name to keep it from conflicting with the existing name. For exam-
ple, if you start up wi sh twice on the same display the first instance will have the name
wi sh and the second instance will have the name “wi sh #2". Similarly, if you open a
second editor window on the samefile it will end up with anamelike“nmx t k. h #2”.

Tk provides two commands that return information about the names of applications.
First, the command

wi nfo nane .

Wi sh #2
will return the name of the invoking application (this command is admittedly obscure;
implement “t k appnane” before the book is published!!). Second, the command

wi nfo interps

wish {wish #2} {mx tk.h}
will return alist whose elements are the names of all the applications defined on the dis-
play.

Security issues

The send command is potentially a major security loophole. Any application that uses
your display can send scriptsto any Tk application on that display, and the scripts can
use the full power of Tcl to read and write your files or invoke subprocesses with the
authority of your account. Ultimately this security problem must be solved in the X dis-
play server, since even applications that don’t use Tk can be tricked into abusing your

DRAFT (3/11/93): Distribution Restricted

230

The Send Command

account by sufficiently sophisticated applications on the same display. However without
Tk it isrelatively difficult to create invasive applications; with Tk and send it istrivial.

You can protect yourself fairly well if you employ a key-based protection scheme for
your display like xaut h instead of a host-based scheme like xhost . Unfortunately,
many people usethexhost program for protection: it specifies a set of machine namesto
the server and any process running on any of those machines can establish connections
with the server. Anyone with an account on any of the listed machines can connect to your
server, send to your Tk applications, and misuse your account.

If you currently usexhost for protection, you should learn about xaut h and switch
to it as soon as possible. Xaut h generates an obscure authorization string and tells the
server not to allow an application to use the display unlessit can produce the string. Typi-
cally the string is stored in afile that can only be read by a particular user, so this restricts
use of the display to the one user. If you want to allow other users to access your display
then you can give them a copy of your authorization file, or you can change the protection
on your authorization file so that it is group-readable. Of course, you should be aware that
in doing so you are effectively giving these other users full use of your account.

DRAFT (3/11/93): Distribution Restricted

Chapter 24
Modal Interactions

24.1

Usually the user of a Tk application has complete flexibility to determine what to do next.
The application dérs a variety of panels and controls and the user selects between them.
However there are times whendtuseful to restrict the userrange of choices or force the
user to do things in a certain order; these are calteldl interactions. The best example
of a modal interaction is a dialog box: the application is carrying out some function
requested by the user (e.g. writing information to a file) when it discovers that it needs
additional input from the user (e.g. the name of the file to write). It displays a dialog box
and forces the user to respond to the dialog box (e.g. type in a file name). Once the user
responds, the application completes the operation and returns to its normal mode of opera-
tion where the user can do anything he or she pleases.

Tk provides two mechanisms for use in modal interactions. Firgyythb command
allows you to temporarily restrict the user so that he or she can only interact with certain
of the applicatiors windows (e.g. only the dialog box). Second,ttheai t command
allows you to suspend the evaluation of a script (e.g. saving a file) until a particular event
has occurred (e.g. the user responded to the dialog box), and then continue the script once
this has happened. These commands are summarizedlenZ@.1.

Grabs

Mouse events such as button presses and mouse motion are normally delivered to the win-
dow under the mouse cursbtowever it is possible for a window to claim ownership of

the mouse so that mouse events are only delivered to that window and its descendants in
the Tk window hierarchyThis is called @rab. When the mouse is over one of the win-

231

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

232

Modal Interactions

grab ?-gl obal ? wi ndow

grab current 2w ndow?

grab rel ease w ndow

grab set ?-gl obal ? wi ndow

grab status w ndow

Sameasgr ab set command described below.

Returns the name of the current grab window for wi ndow's display, or an
empty string if thereisno grab for that display. If wi ndow is omitted,
returnsalist of all windows grabbed by this application for al displays.
Releases the grab on wi ndow if thereis one.

Setsagrab onwi ndow, releasing any previousgrab onwi ndow sdisplay. If
- gl obal isspecified then the grab is global; otherwiseit islocal.

Returnsnone if no grab is currently set onwi ndow, | ocal if aloca grab
isset, and gl obal if aglobal grabisset.

tkwait variabl e var Nane
tkwait visibility w ndow

t kwai t wi ndow wi ndow

Wiaits until variable var Name changes value, then returns.
Waits until the visibility state of wi ndow changes, then returns.

Wiaits until Wi ndow is destroyed, then returns.

Table 24.1. A summary of thegr ab andt kwai t commands.

dows in the grab sub-tree, mouse events are delivered and processed just asif no grab
were in effect. When the mouse is outside the grab sub-tree, button presses and releases
and mouse motion events are delivered to the grab window instead of the window under
the mouse, and window entry and exit events are discarded. Thus a grab prevents the user
from interacting with windows outside the grab sub-tree.

The gr ab command sets and releases grabs. For example, if you've created adialog
box named . dI g and you want to restrict interactionsto . dl g and its subwindows, you
can invoke the command

grab set .dlg
Once the user has responded to the dialog box you can release the grab with the command
grab release .dlg

If the dialog box is destroyed after the user has responded to it then there’s no need to
invokegr ab rel ease: Tk releases the grab automatically when the grab window is
destroyed.

Tk provides two forms of grab, local and global. A local grab affects only the grab-
bing application: if the user moves the mouse into some other application on the display
then he or she can interact with the other application as usual. You should normally use
local grabs, and they arethe default inthegr ab set command. A global grab takes over

DRAFT (3/11/93): Distribution Restricted

24.2 Keyboard handling during grabs 233

Note:

24.2

the entire display so that you cannot interact with any application except the one that set
the grab. To request aglobal grab, specify the- gl obal switchtograb set asinthe
following command:

grab set -global .dlg
Global grabs are rarely needed and they are tricky to use (if you forget to release the grab
your display will become unusable). One place where they are used is for pull-down
menus.
Xwill not |et you set a global grab on a window unlessit isvisible. Section 24.3 describes

howtousethet kwai t vi si bi | i t y command towait for awindow to becomevisible.
Local grabs are not subject to the visibility restriction.

The most common way to use grabsisto set agrab on atop-level window so that only
asingle panel or dialog box is active during the grab. However, it is possible for the grab
sub-tree to contain additional top-level windows; when this happens then all of the panels
or dialogs corresponding to those top-level windows will be active during the grab.

Keyboard handling during grabs

24.3

Local grabs have no effect on the way the keyboard is handled: keystrokes received any-
wherein the application will be forwarded to the focus window as usual. Most likely you
will set the focus to awindow in the grab sub-tree when you set the grab. Windows out-
side the grab sub-tree can’t receive any mouse events so they are unlikely to claim the
focus away from the grab sub-tree. Thus the grab is likely to have the effect of restricting
the keyboard focus to the grab sub-tree; however, you are free to move the focus anywhere
you wish. If you move the mouse to another application then the focus will move to that
other application just asif there had been no grab.

During global grabs Tk also sets agrab on the keyboard so that keyboard events go to
the grabbing application even if the mouseis over some other application. This means that
you cannot use the keyboard to interact with any other application. Once keyboard events
arrive at the grabbing application they are forwarded to the focus window in the usual
fashion.

Waiting: the tkwait command

The second aspect of amodal interaction is waiting. Typically you will want to suspend a
script during a modal interaction, then resume it when the interaction is complete. For
example, if you display afile selection dialog during afile write operation, you will prob-
ably want to wait for the user to respond to the dialog, then complete the file write using
the name supplied in the dialog interaction. Or, when you start up an application you
might wish to display an introductory panel that describes the application and keep this

DRAFT (3/11/93): Distribution Restricted

234

Modal Interactions

panel visible while the application initializes itself; before going off to do the main initial-
ization you'll want to be sure that the panel is on the screen. Thet kwai t command can
be used to wait in situations like these.

Tkwai t hasthree forms, each of which waits for a different event to occur. The first
form is used to wait for awindow to be destroyed, as in the following command:

tkwait wi ndow .dlg

This command will not return until . dl g has been destroyed. You might invoke this com-
mand after creating a dialog box and setting a grab on it; the command won't return until
after the user has interacted with the dialog in away that causes it to be destroyed. While
t kwai t iswaiting the application responds to events so the user can interact with the
application’s windows. In the dialog box example you should have set up bindings that
destroy the dialog once the user’s response is complete (e.g. the user clicks on the OK but-
ton). The bindings for the dialog box might also save additional information in variables
(such as the name of afile, or anidentifier for the button that was pressed). Thisinforma-
tion can be used oncet kwai t returns.

The script bel ow creates a panel with two buttons labelled OK and Cancel , waitsfor
the user to click on one of the buttons, and then del etes the panel:

t opl evel . panel

button . panel.ok -text OK -conmand {
set | abel K
destroy . panel

button . panel.cancel -text Cancel -command {
set | abel Cancel
destroy . panel

}

pack .panel.ok -side left

pack . panel.cancel -side right

grab set . panel

t kwai t wi ndow panel
Whenthet kwai t command returnsthe variable! abel will contain the label of the but-
ton that was clicked upon.

The second form for t kwai t waitsfor the visibility state of awindow to change. For

example, the command

tkwait visibility .intro
will not return until the visibility state of . i nt r o haschanged. Typically thiscommandis
invoked just after a new window has been created, in which case it won't return until the
window has become visible on the screen. Tkwai t vi si bi | ity can be used to wait
for awindow to become visible before setting a global grab on it, or to make sure that an
introductory panel is on the screen before invoking alengthy initialization script. Like all
formsof t kwai t ,t kwai t vi si bility will respond to events while waiting.

DRAFT (3/11/93): Distribution Restricted

24.3 Waiting: the tkwait command 235

The third form of t kwai t provides a general mechanism for implementing other
forms of waiting. In thisform, the command doesn’t return until agiven variable has been
modified. For example, the command

tkwait variable x

will not return until variable x has been modified. Thisform of t kwai t istypically used
in conjunction with event bindings that modify the variable. For example, the following
procedure usest kwai t var i abl e toimplement something analogoustot kwai t

wi ndow except that you can specify more than one window and it will return as soon as
any of the named windows has been deleted (it returns the name of the window that was

deleted):

proc waitWndows args {
gl obal dead
foreach w $args {

bi nd $w <Destroy> "set dead $w'

}
tkwait variabl e dead
return $dead

}

DRAFT (3/11/93): Distribution Restricted

236 Modal Interactions

DRAFT (3/11/93): Distribution Restricted

Chapter 25
Oddsand Ends

25.1

This chapter describes five additional Tk commadds:t r oy, which deletes widgets;

af t er, which delays execution or schedules a script for executionlgtegt e, which

forces operations that are normally delayed, such as screen updates, to be done immedi-
ately;wi nf o, which provides a variety of information about windows, such as their
dimensions and children; ahd, which provides access to various internals of the Tk
toolkit. Table 25.1 summarizes these commands. This chapter also describes several glo-
bal variables that are read or written by Tk and may be useful to Tk applications.

Destroying windows

Thedest r oy command is used to delete windows. It takes any number of window
names as guments, for example:

destroy .dlgl .dlg2
This command will destroydl g1 and. dI g2, including all of their widget state and the
widget commands named after the windows. It also recursively destroys all of their chil-
dren. The commandiést r oy . ” will destroy all of the windows in the application;
when this happens most Tk applications (eigsh) will exit.

237

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

238 Odds and Ends

after ns
Delays for s milliseconds.

after ns arg 7arg arg ..?
Concatenates all thear g values (with spaces as separators) and arranges for
the resulting script to be executed after ms milliseconds have elapsed.
Returns without waiting for the script to be executed.

destroy w ndow 2w ndow wi ndow ...?
Deletes each of thewindow s, plusall of the windows descended from them.
The corresponding widget commands (and all widget state) are also deleted.

tk colormodel wi ndow al ue?
Sets the color model for wi ndow's screen to value, which must be either
color ormonochrome. If val ue isn't specified, returns the current color
model for Wi ndow's screen.

update “Zdletasks ?

Brings display up to date and processes all pending events. If idletasks

is specified then no events are processed except those in the idle task queue
(delayed updates).

winfo option ?arg arg ..?
Returns various pieces of information about windows, depending on
opt i on argument. See reference documentation for details.

Table 25.1. A summary of the commands discussed in this chapter.
25.2 Time delays

Theafter command allows you to incorporate timing into your Tk applications. It has
two forms. If you invoke after with a single argument, then the argument specifiesa
delay in milliseconds, and the command delays for that number of milliseconds before
returning. For example,

after 500
will delay for 500 milliseconds before returning. If you specify additional arguments, asin
the command

after 5000 {puts "Time’s up!"}
then the after command returns immediately without any delay. However, it concatenates
al of the additional arguments (with spaces between them) and arranges for the resulting
script to be evaluated after the specified delay. The script will be evaluated at global level
asan event handler, just like the scripts for bindings. In the example above, a message will
be printed on standard output after five seconds. The script below usesafter to build a
general-purpose blinking utility:

DRAFT (3/11/93): Distribution Restricted

25.3 The update command 239

25.3

proc blink {w option valuel value2 interval} {
$w config $option $val uel
after $interval [list blink $w $option \
$val ue2 $val uel S$interval]

}
blink .b -bg red bl ack 500

Thebl i nk procedure takes five arguments, which are the name of awidget, the name of
an option for that widget, two values for that option, and a blink interval in milliseconds.
The procedure arranges for the option to switch back and forth between the two values at
the given blink interval. It doesthis by immediately setting the option to thefirst value and
then arranging for itself to be invoked again at the end of the next interval with the two
option values reversed, so that option is set to the other value. The procedure reschedules
itself each time it is called, so it executes periodically forever. Bl i nk runs“in back-
ground”: it always returnsimmediately, then gets reinvoked by Tk’s timer code after the
next interval expires.

The update command

Tk normally delays operations such as screen updates until the applicationisidle. For
example, if you invoke awidget command to change the text in a button, the button will
not redisplay itself immediately. Instead, it will schedule the redisplay to be done later and
return immediately. When the application becomesidle (i.e. the current event handler has
completed, plus al events have been processed, so that the application has nothing to do
but wait for the next event) then it carries out all the delayed operations. Tk delays redis-
plays because it saves work in situations where a script changes the same window severa
different times: with delayed redisplay the window only gets redrawn once at the end. Tk
also delays many other operations, such as geometry recal culations and window creation.

For the most part the delays areinvisible. Tk rarely does very much work at atime, so
it becomesidle again very quickly and updates the screen before the user can perceive any
delay. However, there are times when the delays are inconvenient. For example, if a script
is going to execute for along time then you may wish to bring the screen up to date at cer-
tain times during the execution of the script. Theupdat e command allowsyou to do this.
If you invoke the command

updat e idl et asks

then all of the delayed operations like redisplays will be carried out immediately; the com-
mand will not return until they have finished.
The following procedure uses updat e to flash awidget synchronously:
proc flash {w option valuel value2 interval count} {
for {set i 0} {$i < $count} {incr i} {
$w config $option $val uel

DRAFT (3/11/93): Distribution Restricted

240

Odds and Ends

25.4

updat e idl et asks

after $interval

$w config $option $val ue2
updat e idl et asks

after $interval

}
}

This procedureis similar to bl i nk except that it runsin foreground instead of back-
ground: it flashes the option a given number of times and doesn’t return until the flashing
iscomplete. Tk never becomesidle during the execution of this procedure so theupdat e
commands are needed to force the widget to be redisplayed. Without the updat e com-
mands no changes would appear on the screen until the script completed, at which point
the widget's option would changeto val ue2.

If you invoke updat e without thei dI et asks argument, then all pending events
will be processed too. You might do thisin the middle of along calculation to allow the
application to respond to user interactions (e.g. the user might invoke a*“ cancel” button to
abort the calculation).

Information about windows

25.5

Thewi nf o command providesinformation about windows. It has more than 40 different
formsfor retrieving different kinds of information. For example,

wi nfo exists .X
returnsa 0 or 1 value to indicate whether there existsawindow . X,
wi nfo children . nenu
returns alist whose elements are all of the children of . nenu,
wi nfo screennmmhei ght . di al og
returns the height of . di al og’sscreenin millimeters, and
wi nfo class .x

returns the class of widget . x (e.g. but t on, t ext , etc.). Refer to the Tk reference docu-
mentation for details on all of the options provided by wi nf o.

The tk command: color models

Thet k command provides access to various aspects of Tk’sinternal state. At present only
one aspect is accessible: the color model. At any given time, Tk treats each screen asbeing
either a color or monochrome screen; thisis the screen’s color model. When creating wid-
gets, Tk will use different defaults for configuration options depending on the color model

DRAFT (3/11/93): Distribution Restricted

25.6 Variables managed by Tk 241

25.6

of the screen. If you specify a color other than black or white for a screen whose color
model is monochrome, then Tk will round the color to either black or white.

By default Tk picks acolor model for a screen based on the number of bits per pixel
for that screen: if the screen has only afew bits per pixel (currently four or fewer) then Tk
uses a monochrome color model; if the screen has many bits per pixel then Tk treats the
screen as color. You can invoke thet k command to change Tk's color model from the
default. For example, the following command sets the color model for the main window’s
screen to monochrome:

tk col ornodel . nonochrone

If the color model for ascreeniscolor and Tk findsitself unableto allocate acolor for
awindow on that screen (e.g. because the colormap is full) then Tk generates an error that
is processed using the standard t ker r or mechanism described in Section 19.7. Tk then
changes the color model to monochrome and retries the all ocation so the application can
continue in monochrome mode. If the application finds away to free up more colors, it can
reset the color model back to color again.

Variables managed by Tk

Several global variables are significant to Tk, either because it sets them or because it
reads them and adjustsits behavior accordingly. You may find the following variables use-
ful:

tk_version Set by Tk to its current version number. Has aform like
3.2, where 3 isthe major version number and 2 is a minor
version humber. Changes in the major version number
imply incompatible changesin Tk.

tk_library Set by Tk to hold the path name of the directory containing
alibrary of standard Tk scripts and demonstrations. This
variableis set from the TK_LI BRARY environment vari-
able, if it exists, or from a compiled-in default otherwise.

tk_strictMotif If settolby theapplication, then Tk goesout of itsway to
observe strict Motif compliance. Otherwise Tk deviates
dlightly from Motif (e.g. by highlighting active elements
when the mouse cursor passes over them).

In addition to these variables, which may be useful to the application, Tk also usesthe

associative array t k_pr i v to storeinformation for its private use. Applications should
not use or modify any of thevaluesint k_pri v.

DRAFT (3/11/93): Distribution Restricted

242 Odds and Ends

DRAFT (3/11/93): Distribution Restricted

Chapter 26
Examples

26.1

This chapter presents two relatively complete examples that illustrate many of the features
of Tk. The first example is a procedure that generates dialog boxes, waits for the user to
respond, and returns the useiesponse. The second example is an application that allows
you to “remote-control” any other Tk application on the display: it connects itself to that
application so that you can type commands to the other application and see the results.

A procedure that generates dialog boxes

The first example is acTprocedure namedii al og that creates dialog boxes like those
shown in Figure 26.1. Each dialog contains a text message at the top plus an optional bit-
map to the left of the text. At the bottom of the dialog box is a row of any humber of but-
tons. One of the buttons may be specified as the default button, in which case it is
displayed in a sunken frani8i. al og creates a dialog box of this form, then waits for the
user to respond by clicking on a button. Once the user has respdndéadg destroys
the dialog box and returns the index of the button that was invoked. If the user types a
return and a default button was specified, then the index of the default button is returned.
Di al og sets a grab so that the user must respond to the dialog box before interacting with
the application in any other way

Figures 26.2 and 26.3 show the Tode fordi al og. It takes six or more guments.
The first agumentw, gives the name to use for the diatogp-level windowThe second
amgumentti t| e, gives a title for the window manager to display in the dialdgcora-
tive frame. The third gumentt ext , gives a message to display on the right side of the
dialog. The fourth gjumentbi t map, gives the name of a bitmap to display on the left

243

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

244 Examples

= ' File Modified e

File "tcl.h” has been modified
since the last time it was saved.
Do you want to save it before
exiting the application?

awE

_ | Save File I Discand Changes | Return To Editor | g

dialog .d {File Modif ied} {File "tkInt.h" has been modif ied since the last \
time it was saved. Do you want to save it before exiting the application?} \
warning 0 {Save File} {Discard Changes} {Return To Editor}

= Not Responding |

The file server isn’t responding
right now; T'll keep trying.

0|<|

dialog .d {Not Responding} {The f ile server isn’t responding right
now; I'll keep trying.} {} -1 OK

Figure 26.1. Two examples of dialog boxes created by thedialog procedure. Underneath each
dialog box is the command that created it.

side of thediaog; if it is specified as an empty string then no bitmap is displayed. The fifth
argument, default |, givesthe index of a default button, or -1 if thereisto be no default
button. The sixth and additional arguments contain the strings to display in the buttons.

The code for dialog dividesinto five mgjor parts, each headed by a comment. The
first part of the procedure creates the dialog's top-level window. It sets up information for
the window manager, such asthetitle for the window's frame and the text to display in the
dialog'sicon. Then it creates two frames, one for the bitmap and message at the top of the
dialog, and the other for the row of buttons at the bottom.

The second part of dialog creates a message widget to hold the dialog's text string
and alabel widget to hold its bitmap, if any. The widgets are arranged on the right and I eft
sides of the top frame, respectively, using the packer.

DRAFT (3/11/93): Distribution Restricted

26.1 A procedure that generates dialog boxes 245

proc dialog {wtitle text bitmap default args} {
gl obal button

1. Create the top-level wi ndow and divide it into top
and bottom parts.

topl evel $w -class Dial og

wntitle $w $title

wm i connarme $w Di al og

frame $w.top -relief raised -bd 1
pack $w.top -side top -fill both
frame $w. bot -relief raised -bd 1
pack $w. bot -side bottom-fill both

2. Fill the top part with the bitmap and nessage.

message $w.top.meg -width 3i -text $text \
-font -Adobe- Ti mes- Medi um R- Nor mal - *- 180- *
pack $w.top.nsg -side right -expand 1 -fill both \
-padx 5m -pady 5m
if {$bitmap !'= ""} {
| abel $w. top. bitmap -bitmap $bitnmap
pack $w.top.bitmap -side left -padx 5m -pady 5m
}

3. Create a row of buttons at the bottom of the dial og.

set i O
foreach but $args {
button $w bot.button$i -text $but -command \
"set button $i"
if {$i == $default} {
frame $w. bot.default -relief sunken -bd 1
pack $w. bot.default -side left -expand 1\
-padx 5m -pady 2m
pack $w. bot.button$i -in $w bot.default -side left

-padx 3m -pady 3m -ipadx 2m-ipady 1m
} else {
pack $w. bot.button$i -side left -expand 1\
-padx 5m -pady 5m -ipadx 2m -ipady 1m
}

incr i

Figure 26.2. A Tcl procedure that generates dialog boxes with a text message, optional bitmap, and
any number of buttons. Continued in Figure 26.3.

DRAFT (3/11/93): Distribution Restricted

246

Examples

4. Set up a binding for <Return>, if there's a default,
set a grab, and claimthe focus too.

if {$default > 0} {
bi nd $w <Return> "$w. bot . butt on$default flash; \
set button $defaul t"

set ol dFocus [focus]
grab $w
focus $w

5. Wait for the user to respond, then restore the focus
and return the index of the sel ected button.

tkwait variable button
destroy $w

focus %ol dFocus

return $button

Figure 26.3. Procedure to generate dialog boxes, cont’ d.

Note:

The third part of the procedure creates the row of buttons. Sincear gs was used as
the name of the last argument to di al og, the procedure can take any number of argu-
ments greater than or equal to five; ar gs will be alist whose elements are al the addi-
tional arguments after def aul t . For each of these arguments, di al og creates a button
that displays the argument value as itstext. The default button, if any, is packed in a spe-
cial sunkenring ($w. bot . def aul t). The buttons are packed with the - expand option
so that they spread themselves evenly across the width of the dialog box; if thereisonly a
single button then it will be centered. Each button is configured so that when the user
clickson it the global variable but t on will be set to the index of that button.

It's important that the value of the - conmrand option is specified in quotes, not curly
braces, sothat $i (the button’sindex) is substituted into the command immediately. If the
value were surrounded by braces, then the value of $i wouldn’t be substituted until the

command is actually executed; thiswould use the value of global variablei , not the
variablei fromthedi al og procedure.

The fourth part of di al og sets up abinding so that typing areturn to the dialog box
will flash the default button and set the but t on variable just asif the button had been
invoked. It also sets the input focus to the dialog box and sets alocal grab on the dialog
box to giveit control over both the keyboard and the mouse.

Thelast part of the procedure waits for the user to interact with the dialog. It doesthis
by waiting for the but t on variable to change value, which will happen when the user

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 247

= Tk Remote Controller |J ol

widget: set x

can't read "x": no such wvariable
widget: winfo children .

(Mg . men

rolodex: winfo children .

cmenu L huttons . frame

rolodex: |

Figure 26.4. Ther nt application allows users to type interactively to any Tk application on the
display. It contains a menu for selecting an application plus atext widget for typing commands and
displaying results. In this example the user has issued commands to three different applications:
first ther mt application itself, then an application named wi dget , and finally one hamed

r ol odex (the prompt on each command line indicates the name of the application that executed
the command).

clicks on abutton in the dialog box or types areturn. When thet kwai t command
returns, the but t on variable contains the index of the selected button. Di al og then
destroys the dialog box (which also releases its grab), restores the input focus to its old
window, and returns.

26.2 A remote-control application

The second exampleisan application called r nt , which allowsyou to type Tcl commands
interactively to any Tk application on the display. Figure 26.4 showswhat r nt looks like
on the screen. It contains a menu that can be used to select an application plus a text wid-
get and scrollbar. At any giventimer nt is*“connected” to one application; lines that you
typein the text widget are forwarded to the current application using send and the results
are displayed in the text widget. Rt displays the name of the current application in the
prompt at the beginning of each command line. You can change the current application by
selecting an entry in the menu, in which case the prompt will change to display the new
application’s name. You can also type commandsto ther nt application itself by selecting
rm asthe current application. Whenr nt starts up it connectsto itself.

The script that createsr nt isshown in Figures 26.5-26.9. The script is designed to be
placed into afile and executed directly. The first line of the script,

DRAFT (3/11/93): Distribution Restricted

248

Examples

#!/usr/local/bin/wish -f

1. Create basic application structure: nmenu bar on top of
text wi dget, scrollbar on right.

frame .menu -relief raised -bd 2

pack .nenu -side top -fill x

scrollbar .s -relief flat -conmand ".t yview

pack .s -side right -fill y

text .t -relief raised -bd 2 -yscrollcomand ".s set" \
-setgrid true

.t tag configure bold -font *-Courier-Bol d-R-Normal -*-120-*

pack .t -side left -fill both -expand 1

wnmtitle . "Tk Renpte Controller"

wm i connanme . "Tk Renote”

wnmnsize . 11

2. Create nenu button and nenus.

nmenubutton .menu.file -text "File" -underline O -nmenu
.menu.file.m
menu .nenu.file.m
.menu.file.madd cascade -|abel "Select Application" \
-underline O -accelerator => -nmenu .nenu.file. mapps
.menu.file.madd conmand -l abel "Quit" -underline 0\
-comrand "destroy ."
menu . nenu.file. mapps -postcomrand fill AppsMenu
pack .nenu.file -side left
tk_nmenuBar .nmenu .nenu.file
proc fill AppsMenu {} {
catch {.nmenu.file. mapps delete 0 | ast}
foreach i [Isort [winfo interps]] {
.menu. file. mapps add conmand -1l abel $i \
-command [list newApp $i]

Figure 26.5. A script that generatesr nt , an application for remotely controlloing other Tk
applications. This figure contains basic window set-up code. The script continues in Figures 26.6-
26.9

#!/usr/local/bin/wsh -f

issimilar to the first line of ashell script: if you invoke the script file directly from a shell
then the operating system will invokew sh instead, passing it two arguments: - f and the
name of the script file. W sh will then execute the contents of the file asa Tcl script.

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 249

3. Create bindings for text widget to allow commands to

be entered and infornmation to be sel ected. New characters
can only be added at the end of the text (can't ever nobve
insertion point).

bind .t <1> {

set tk_priv(sel ect Mode) char

.t mark set anchor @&, %

if {[lindex ["Wconfig -state] 4] == "normal"} {focus %W
}

bind .t <Doubl e-1> {
set tk_priv(sel ect Mode) word
tk_textSelectTo .t @&, %

bind .t <Triple-1> {
set tk_priv(sel ect Mode) |ine
tk_textSelectTo .t @&, %

}
bind .t <Return> {.t insert insert \n; invoke}
bind .t <BackSpace> backspace
bind .t <Control -h> backspace
bind .t <Del ete> backspace
bind .t <Control-v> {
.t insert insert [selection get]
.t yview -pickplace insert
if [string match *.0 [.t index insert]] {
i nvoke
}
}

Figure 26.6. Bindingsfor ther mt application. These are modified versions of the default Tk
bindings, so they use existing Tk facilities such asthe variablet k_pr i v and the procedure
tk_textSelectTo

Ther mt script contains about 100 lines of Tcl code in al, which divide into seven
major parts. It makes extensive use of the facilities of text widgets, including marks and
tags; you may wish to review the reference documentation for texts as you read through
the codeforrnt .

Thefirst part of ther nt script sets up the overall window structure, consisting of a
menu bar, atext widget, and ascrollbar. It also passes information to the window manager,
such astitles to appear in the window’s decorative frame and icon. The command “wm
nmnsize . 1 1” enablesinteractiveresizing by the user as described in Section 22.1.
Since the text widget has been packed with the - expand option set to 1, it will receive
any extraspace; sinceit islast in the packing order, it will also shrink if the user resizes

DRAFT (3/11/93): Distribution Restricted

250

Examples

4. Procedure to backspace over one character, as long as
the character isn't part of the prompt.

proc backspace {} {
if {[.t index pronptEnd] !=[.t index {insert - 1 char}]}

.t delete {insert - 1 char} insert
.t yview -pickplace insert

Figure 26.7. Procedure that implements backspacing for r nt .

Note:

the application to asmaller size than it initially requested. The- set gri d option for the
text widget enables gridding as described in Section 22.2: interactive resizing will always
leave the text widget with dimensions that are an integral number of characters.

The command

.t tag configure bold -font \
*-Courier-Bol d- R-Nor mal - *-120-*

creates atag named bol d for the text widget and associates a bold font with that tag. The
script will apply this tag to the characters in the prompts so that they appear in bol dface,
whereas the commands and results appear in a normal font.

The second part of the script fills in the menu with two entries. The top entry displays
a cascaded submenu with the names of all applications, and the bottom entry is a com-
mand entry that causesr nt to exit (it executesthe script “dest r oy . ”, which destroys
al of the application’s windows, when wi sh discoversthat it no longer has any windows
left then it exits). The cascaded submenuisnamed. nenu. fil e. m apps; its
- post conmand option causesthe script “f i | | AppsMenu” to be executed each time
the submenu is posted on the screen. Fi | | AppsMenu isaTcl procedure defined at the
bottom of Figure 26.5; it deletes any existing entriesin the submenu, extracts the names of
al applications on the display with “wi nf o i nt er ps”, and creates one entry in the
menu for each application name. When one of these entriesisinvoked by the user, the pro-
cedure newApp will be invoked with the application’s name as argument.

The command[‘l i st newApp $i] " creates a @l list with two elements. As

described in Section XXX, when a list is executed as a command each element of the list

becomes one woifor the command. Thus this form guarantees that newApp will be
invoked with a single gument consisting of the value$f at the time the menu entry is
created, even Bi contains spaces or other special characters.

Thethird part of ther nt script, shown in Figure 26.6, creates event bindings for the
text widget. Tk defines several default bindings for texts, which handle mouse clicks,

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 251

5. Procedure that's invoked when return is typed: if

there’'s not yet a conplete command (e.g. braces are open)
then do nothing. Oherw se, execute command (locally or
renotely), output the result or error nessage, and issue
a new pronpt.

proc invoke {} {
gl obal app
set cnd [.t get {pronptEnd + 1 char} insert]
if [info conplete $cnd] {
if {$app == [winfo nane .]} {
catch [list uplevel #0 $cnd] nsg
} else {
catch [list send $app $cnmd] nsg

}
if {$nsg !'= ""} {

.t insert insert $msg\n
}

pr onpt
}
.t yview -pickplace insert

}

proc prompt {} {
gl obal app
.t insert insert "$app:
.t mark set promptEnd {insert - 1 char}
.t tag add bold {insert linestart} pronptEnd

Figure 26.8. Procedures that execute commands and output prompts for r nt .

character insertion, and common editing keystrokes such as backspace. However, r nt 's
text widget has special behavior that isinconsistent with the default bindings, so the code
in Figure 26.6 overrides many of the defaults. You don’t need to understand the detail s of
the bindings; they have been copied from the defaults in Tk’s startup script and modified
so that (@) the user can’t move the insertion cursor (it always has to be at the end of the
text), (b) the procedure backspace isinvoked instead of Tk’'s normal text backspace
procedure, and (c) the procedure i nvoke is called whenever the user types areturn or
copiesin text that ends with a newline.

The fourth part of ther nt script is aprocedure called backspace. It implements
backspacing in away that disallows backspacing over the prompt (see Figure 26.7).
Backspace checksto seeif the character just before the insertion cursor is the last char-
acter of the most recent prompt. If not, then it deletes the character; if so, then it does noth-

DRAFT (3/11/93): Distribution Restricted

252

Examples

6. Procedure to select a new application. Al so changes
the pronpt on the current conmand line to reflect the new
name.

proc newApp appNane {
gl obal app
set app $appNane
.t delete {pronptEnd |inestart} pronptEnd
.t insert pronptEnd "$appNane:"
.t tag add bold {pronptEnd |linestart} pronptEnd

}

7. Mscellaneous initialization.

set app [wi nfo name .]

pr onpt
focus .t

Figure 26.9. Code to select a new application for rmt, plus miscellaneous initialization code.

ing, so that the prompt never gets erased. To keep track of the most recent prompt, r nt
setsamark named pr onpt End at the position of the last character in the most recent
prompt (see the pr onpt procedure below for the code that sets pr onpt End).

Thefifth part of ther nt script handles command invocation; it consists of two proce-
dures, i nvoke and pr onpt (see Figure 26.8). Thei nvoke procedureis called when-
ever anewline character has been added to the text widget, either because the user typed a
return or because the selection was copied into the widget and it ended with a newline.
Invoke extracts the command from the text widget (everything from the end of the prompt
to the current insertion point) and then invokesi nf o conpl et e to make sure that the
command is complete. If the command contains unmatched braces or unmatched quotes
theni nvoke returns without executing the command so the user can enter the rest of the
command; after each return istyped i nvoke will check again, and once the command is
complete it will be invoked. The command isinvoked by executing it locally or sending it
to the appropriate application. If the command returns a non-empty string (either as a nor-
mal reult or as an error message) then the string is added to the end of the text widget.
Finally, i nvoke outputs a new prompt and scrolls the view in the text to keep the inser-
tion cursor visible.

The pr onpt procedureis responsible for outputting prompts. It just adds characters
to the text widget, setsthe pr onpt End mark to the last character in the prompt, and then
appliesthe bol d tag to all the characters in the prompt so that they’ |l appear in abold
font.

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 253

The sixth part of ther nt script consists of the newApp procedure in Figure 26.9.
NewApp isinvoked to change the current application. It setsthe global variable app,
which identifies the current application, then overwrites the most recent prompt to display

the new application’s name.
The last part of r mt consists of miscellaneous initialization (see Figure 26.9). It con-

nects the application to itself initially, outputstheinitial prompt, and setsthe input focusto
the text window.

DRAFT (3/11/93): Distribution Restricted

254 Examples

DRAFT (3/11/93): Distribution Restricted

