Chapter 36 Introduction 323

36.1 What's in a widget? 324

36.2 Widgets are event-driven325
36.3 Tkvs. Xlib 325

36.4 Square: an example widgeB26
36.5 Design for re-usability 328

Chapter 37 Creating Windows 329
37.1 Tk_Window structures 329
37.2 Creating Tk_Vihdows 329
37.3 Setting a windowvs class 331
37.4 Deleting windows 332
37.5 Basic operations on Tk_Wdows 332
37.6 Create procedures333
37.7 Delayed window creation 336

Chapter 38 Configuring Widgets 337

38.1 Tk_ConfigureVidget 337

38.1.1 Tk_ConfigSpec tables 339

38.1.2 Invoking Tk_ConfigureWidget 341

38.1.3 Errors 342

38.1.4 Reconfiguring 342

38.1.5 Tk_Configurelnfo 342

38.1.6 Tk_FreeOptions 343

38.1.7 Other uses for configuration tables 343
38.2 Resource caches343

38.2.1 Graphics contexts 344
38.2.2 Other resources 345

38.3 Tk_Uids 346

38.4 Other translators 346

38.5 Changing window attributes347

38.6 The square configure procedurd48

38.7 The square widget command proceduz9

DRAFT (7/10/93): Distribution Restricted

Chapter 39 Events 353
39.1 Xevents 353
39.2 Fileevents 357
39.3 Timer events 359
39.4 Idlecallbacks 360
39.5 Generic event handlers 361
39.6 Invoking the event dispatcher 362

Chapter 40 Displaying Widgets 365
40.1 Delayedredisplay 365
40.2 Double-buffering with pixmaps 367
40.3 Drawing procedures 367

Chapter 41 Destroying Widgets 371
41.1 Basics 371
41.2 Delayedcleanup 372

Chapter 42 Managing the Selection 377
42.1 Selection handlers 377
42.2 Claiming the selection 380
42.3 Retrieving the selection 381

Chapter 43 Geometry Management 383
431 Requesting asizefor awidget 383
43.2 Internal borders 385
433 Grids 386
43.4 Geometry managers 387
43.5 Claiming ownership 388
43.6 Retrieving geometry information 388
43.7 Mapping and setting geometry 389

DRAFT (7/10/93): Distribution Restricted

Part |V

Tk’ s C Interfaces

322

DRAFT (7/10/93): Distribution Restricted

Chapter 36
| ntroduction

Like Tcl, Tk is a C library package that is linked with applications, and it provides a col-
lection of library procedures that you can invoke from C code in the enclosing application.
Although you can do many interesting things with Tk without writing any C code, just by
writing Tcl scripts fomi sh, you'll probably find that most Ilge GUI applications require
some C code too. The most common reason for usirgT kiterfaces is to build new
kinds of widgets. For example, if you write a Tk-based spreadsheet you'll probably need
to implement a new widget to display the contents of the spreadsheet; if you write a chart-
ing package you'll probably build one or two new widgets to display charts and graphs in
various forms; and so on. Some of these widgets could probably be implemented with
existing Tk widgets such as canvases or texts, but for big jobs a new widget tailored to the
needs of your application can probably do the job more simply &oigetly than any of
Tk’s general-purpose widgets/pically you'll build one or two new widget classes to dis-
play your applicatiors new objects, then combine your custom widgets with Biilt-in
widgets to create the full user interface of the application.

The main focus of this part of the book is on building new widgets. Most sf Tk’
library procedures exist for this purpose, and most of the text in this part of the book is ori-
ented towards widget builders. Howewayu can also use Tlibrary procedures to build
new geometry managers; this is described in Chapter 4go@®@may simply need to pro-
vide access to some window system feature thatsspported by the existinglfcom-
mands, such as the ability to set the border width of a top-level wihd@amy event, the
new features you implement should appearchedmmands so that you can use them in
scripts. Both the philosophical issues and the library procedures discussed in Part Il apply
to this part of the book also.

323

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

324

Introduction

36.1 What's in a widget?

All widget classes have the same basic structure, consisting of a widget record and six C
procedures that implement the widgdtok and feel. More complex widgets may have
additional data structures and procedures besides theses, but all widgets have at least these
basic components.

A widget ecod is the C data structure that represents the state of a widget. It
includes all of the widget'configuration options plus anything else the widget needs for
its own internal use. For example, the widget record for a label widget contains tre label’
text or bitmap, its background and foreground colors, its relief, and so on. Each instance of
a widget has its own widget record, but all widgets of the same class have widget records
with the same structure. One of the first things you will do when designing a new widget
class is to design the widget record for that class.

Of the widgets six core procedures, two are Tommand procedures. The first of
these is called thereate pocedug; it implements the d command that creates widgets
of this class. The commarsdhame is the same as the class name, and the command
should have the standard syntax described in Section XXX for creating widgets. The com-
mand procedure initializes a new widget record, creates the window for the widget, and
creates the widget command for the widget. It is described in more detail in Chapters 37
and 38.

The second command procedure iswdget command pcedueg; it implements the
widget commands for all widgets of this class. When the widget command is invoked its
cl i ent Dat a agument points to the widget record for a particular widget; this allows
the same C procedure to implement the widget commands for mérguifwidgets (the
counter objects described in Section XXX used a similar approach).

The third core procedure for a widget class isdtsfigue pocedue. Given one or
more options in string form, such addackgr ound r ed”, it parses the options and
fills in the widget record with corresponding internal representations suctX@shar
structure. The configure procedure is invoked by the create procedure and the widget com-
mand procedure to handle configuration options specified on their command lines. Chap-
ter 38 describes the facilities provided by Tk to make configure procedures easy to write.

The fourth core procedure is theent pocedue. It is invoked by Tks event dis-
patcher and typically handles exposures (part of the window needs to be redrawn), win-
dow size changes, focus changes, and the destruction of the wirtumevent procedure
does not normally deal with user interactions such as mouse motions and key presses;
these are usually handled with class bindings created with thé command as
described in Chapter XXX. Chapter 39 describes the Tk event dispancheding its
facilities for managing X events plus additional features for timers, event-driven file I/O,
and idle callbacks

The fifth core procedure is tlisplay pocedue. It is invoked to redraw part or all of
the widget on the screen. Redisplays can be triggered by many things, including window
exposures, changes in configuration options, and changes in the input focus. Chapter 40

DRAFT (7/10/93): Distribution Restricted

36.2 Widgets are event-driven 325

36.2

Widget

Tk

Xlib

Figure 36.1. Tk hides many of the Xlib interfaces from widgets, but widgets till invoke Xlib
directly for afew purposes such as drawing on the screen.

discusses several issues related to redisplay, such as deferred redisplay, double-buffering
with pixmaps, and Tk’s support for drawing 3-D effects.

The last of awidget's core proceduresisits destroy procedure. This procedureis
called when the widget is destroyed and is responsible for freeing up all of the resources
allocated for the widget such asthe memory for the widget record and X resources such as
colors and pixmaps. Widget destruction is tricky because the widget could be in use at the
timeit is destroyed; Chapter 41 describes how deferred destruction is used to avoid poten-
tial problems.

Widgets are event-driven

36.3

Part Il described how the Tcl scriptsfor Tk applications are event-driven, in that they con-
sist mostly of short responsesto user interactions and other events. The C code that imple-
ments widgets is also event-driven. Each of the core procedures described in the previous
section responds to events of some sort. The create, widget command, and configure pro-

cedures all respond to Tcl commands. The event procedure responds to X events, and the

display and destroy procedures respond to things that occur either in X or in Tcl scripts.

Tk vs. Xlib

Xlibisthe C library package that provides the lowest level of access to the X Window
System. Tk isimplemented using Xlib but it hides most of the Xlib procedures from the C
code in widgets, as shown in Figure 36.1. For example, Xlib provides a procedure XCr e-
at eW ndowto create a new windows, but you should not useit; instead, call Tk_Cr e-
at eW ndowFr onPat h or one of the other procedures provided by Tk for this purpose.
Tk’s procedures call the Xlib procedures but also do additional things such as associating
atextual name with the window. Similarly, you shouldn’t normally call Xlib procedures
like XAl | ocCol or to alocate colors and other resources; call the corresponding Tk pro-

DRAFT (7/10/93): Distribution Restricted

326 Introduction

cedures likeTk _Get Col or instead. In the case of colors, Tk calls Xlib to allocate the
color, but it also remembers the colors that are allocated; if you use the same color in
many diferent places, Tk will only communicate with the X server once.

However Tk does not totally hide Xlib from you. When widgets redisplay themselves
they make direct calls to Xlib procedures suc@sawLi ne andXDr awSt ri ng. Fur-
thermore, many of the structures manipulated by Tk are the same as the structures pro-
vided by Xlib, such as graphics contexts and window attributes. Thus you'll need to know
quite a bit about Xlib in order to write new widgets with Tk. This book assumes that you
are familiar with the following concepts from Xlib:

* Window attributes such dmckgr ound_pi xel , which are stored iKSet W ndo-
WAt t ri but es structures.

¢ Resources related to graphics, such as pixmaps, colors, graphics contexts, and fonts.
* Procedures for redisplaying, suchX¥ awlLi ne andXDr awSt r i ng.
* Event types and théEvent structure.

You'll probably find it useful to keep a book on Xlib nearby when reading this book and to
refer to the Xlib documentation for specifics about the Xlib structures and procedures. If
you havert used Xlib before I'd suggest waiting to read about Xlib until you need the
information. That way you can focus on just the information you need and avoid learning
about the parts of Xlib that are hidden by Tk.

Besides Xlib, you shouldhheed to know anything about any other X toolkit or
library. For example, Tk is completely independent from the Xt toolkit so you dead
to know anything about Xt. For that mattiéryou’re using Tk yowcant use Xt: their wid-
gets are incompatible and cabé mixed together

36.4 Square: an example widget

I'll use a simple widget called “square” for examples throughout PaftH¥ square wid-

get displays a colored square on a background as shown in Figure 36.2. The widget sup-
ports several configuration options, such as colors for the background and for the square, a
relief for the widget, and a border width used for both the widget and the square. It also
provides three widget commandsnf i gur e, which is used in the standard way to

query and change optionspsi t i on, which sets the position of the squareppeileft

corner relative to the uppéft corner of the windoypandsi ze, which sets the squase’

size. Figure 36.2 illustrates th@si t i on andsi ze commands.

Given these simple commands many other features can be writtelhsasfts. For
example, the following script arranges for the square to center itself over the mouse cursor
on Button-1 presses and to track the mouse as long as Button-1 is held down. It assumes
that the square widget is nameds”.

DRAFT (7/10/93): Distribution Restricted

36.4 Square: an example widget 327

figmm = figmm |
—| Square widget example| - | || —| Square widget example | - | |

square .s .S position 100 75
pack .s
wmtitle .s "Square w dget exanple"

@ (b)

i TE=
—| Square widget example| - | ||

.S size 40

(©

Figure 36.2. A sequence of scripts and the displays that they produce. Figure (a) creates a square
widget, Figure (b) invokesthe posi t i on widget command to move the square within its widget,
and Figure (c) changes the size of the square.

proc center {x y} {
set a [.s size]
.S position [expr $x-(%$a/2)] [expr $y-(%a/2)]

}
bind .s <1> {center % %}
bind .s <Bl-Mtion> {center % %}

Note: For this particular widget it would mbably make mersense to use configuration options
instead of th@posi t i on andsi ze commands; | made them widget commands just to
illustrate how to write widget commands.

DRAFT (7/10/93): Distribution Restricted

328

Introduction

36.5

The implementation of the square widget requires about 320 lines of C code exclud-

ing comments, or about 750 lines in a copiously-commented version. The square widget
doesnt use all of the features of Tk but it illustrates the basic things you must do to create
a new widget. For examples of more complex widgets you can look at the source code for
some of Tk widgets; they have the same basic structure as the square widget and they
use the same library procedures that you'll read about in the chapters that follow

Design for re-usability

When building a new widget, try to make it as flexible and general-purpose as possible. If
you do this then it may be possible for you or someone else to use your widget in new
ways that you didn’foresee when you created it. Here are a few specific things to think
about:

1

Store all the information about the widget in its widget record. If you use static or glo-
bal variables to hold widget state then it may not be possible to have more than one
instance of the widget in any given application. Even if youtdamvision using more
than one instance per application, datd anything to rule this out.

. Make sure that all of the primitive operations on your widget are available through its

widget command. Dohhard-wire the widge$’ behavior in C. Instead, define the
behavior as a set of class bindings usingoihed command. This will make it easy to
change the widget’behaviar

. Provide escapes tell Think about interesting ways that you can emb#@dmmands

in your widget and invoke them in response to various events. For example, the actions
for button widgets and menu items are stored asd aoimmands that are evaluated

when the widgets are invoked, and canvases and texts allow you to assdaata-T
mands with their internal objects in order to give them behaviors.

. Organize the code for your widget in one or a few files that can easily be linked into

other applications besides the one you're writing.

DRAFT (7/10/93): Distribution Restricted

Chapter 37
Creating Windows

This chapter presents Bkbasic library procedures for creating windows. It describes the
Tk_W ndowtype, which is used as a token for windows, then introduces the Tk proce-
dures for creating and deleting windows. Tk provides several macros for retrieving infor-
mation about windows, which are introduced next. Then the chapter discusses what
should be in the create procedure for a widget, using the square widget as an example. The
chapter closes with a discussion of delayed window creation.ehde 37.1 for a sum-

mary of the procedures discussed in the chapter

37.1 Tk_Window structures

Tk uses a token of typek_ W ndowto represent each windoWvhen you create a new
window Tk returns &k_W ndowtoken, and you must pass this token back to Tk when
invoking procedures to manipulate the windéwr'k_W ndow s actually a pointer to a
record containing information about the wind®wch as its name and current size, but Tk
hides the contents of this structure and you may not read or write its fields dirbetly
only way you can manipulateéf& _W ndowis to invoke procedures and macros provided
by Tk.

37.2 Creating Tk_Windows

Tk applications typically use two procedures for creating winddwsCr eat eMai n-
W ndowandTk_Cr eat eW ndowFr onPat h. Tk_Cr eat eMai nW ndow creates a

329

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

330

Creating Windows

Tk_W ndow Tk_Cr eat eMai nW ndow(Tcl _I nterp *interp,
char *screenNane, char *appNane)

Creates a new application and returns a token for the application’s main win-
dow. Scr eenNane gives the screen on which to create the main window (if
NULL then Tk picks default), and appNarre gives a base name for the appli-
cation. If an error occurs, returns NULL and stores an error message in
interp->result.

Tk_W ndow Tk_Cr eat eW ndowFr onPat h(Tcl _Interp *interp,

Tk_W ndow tkwi n, char *pat hNane, char *screenNane)

Creates anew window int kwi n’s application whose path nameis pat h-
Narme. If scr eenNane isNULL the new window will be an internal win-
dow; otherwise it will be atop-level window onscr eenNane. Returns a
token for the new window. If an error occurs, returns NULL and stores an
error messageini nt erp->resul t.

Tk_Set O ass(Tk_W ndow t kwi n, char *cl ass)
Setst kwi n’sclasstocl ass.

Tk_Dest r oyW ndow(TKW ndow t kwi n)
Destroy t kwi n and all of its descendantsin the window hierarchy.

Tk_W ndow Tk_NameToW ndow(Tcl _Interp *interp, char *pathNane,
Tk_W ndow t kwi n)
Returns the token for the window whose path name ispat hNamne in the
same application ast kwi n. If no such name exists then returns NULL and
stores an error messageini nt er p- >resul t.

Tk_MakeW ndowExi st (TkW ndow t kwi n)
Force the creation of the X window for t kwi n, if it didn’t already exist.

Table 37.1. A summary of basic procedures for window creation and deletion.

new application; it's usually invoked in the main program of an application. Before invok-
ing Tk_Cr eat eMai nW ndowyou should create a Tcl interpreter to use for the applica
tion. Tk_Cr eat eMai nW ndowtakes three arguments, consisting of the interpreter plus
two strings:

Tk_W ndow Tk_Cr eat eMai nW ndow(Tcl _I nterp *interp,

char *screenNanme, char *appNane)

The scr eenNane argument gives the name of the screen on which to create the main
window. It can have any form acceptable to your X server. For example, on most UNIX-
like systems“uni x: 0" selects the default screen of display 0 on the local machine, or
“gi nger. cs. berkel ey. edu: 0. 0" selects screen 0 of display 0 on the machine
whose network addressis“gi nger . cs. ber kel ey. edu”. Scr eenNane may be
specified as NULL, in which case Tk picks a default server. On UNIX-like systems the
default server isnormally determined by the DI SPLAY environment variable.

DRAFT (7/10/93): Distribution Restricted

37.3 Setting a window's class 331

37.3

Thelast argument to Tk_Cr eat eMai nW ndowisanameto use for the application,
suchas“cl ock” for aclock programor “mx f 00. ¢” for an editor named nx editing a
filenamed f 00. c. Thisisthe name that other applications will use to send commandsto
the new application. Each application must have a unique name; if appNane isalready in
use by some other application then Tk adds a suffix like* #2” to make the name unique.
Thus the actual name of the application may be something like“cl ock #3” or “nx
foo.c #4”. You can find out the actual name for the application using the Tk_ Nane
macro or by invoking the Tcl command “wi nf o nane . ".

Tk _Cr eat eMai nW ndow createsthe application’s main window, registersits name
so that other applications can send commandsto it, and adds all of Tk’s commands to the
interpreter. It returns the Tk_ W ndowtoken for the main window. If an error occurs (e.g.
screenNane doesn't exist or the X server refused to accept a connection) then
Tk _Cr eat eMai nW ndow returns NULL and leaves an error message in
interp->result.

Tk _Cr eat eW ndowFr onPat h adds a new window to an existing application. It's
the procedure that’s usually called when creating new widgets and it has the following
prototype:

Tk_W ndow Tk_Cr eat eW ndowFr onPat h(Tcl _Interp *interp,

Tk_W ndow tkwi n, char *pathNane, char *screenNane);

Thet kwi n argument isatoken for an existing window; its only purposeisto identify the
application in which to create the new window. Pat hNane gives the full name for the
new window, such as“. a. b. ¢”. There must not already exist awindow by this hame,
but its parent (for example, “. a. b”) must exist. If scr eenName is NULL then the new
window is an internal window; otherwise the new window will be atop-level window on
the indicated screen. Tk_Cr eat eW ndowfr onPat h returns atoken for the new win-
dow unless an error occurs, in which case it returns NULL and leaves an error message in
interp->result.

Tk aso provides a third window-creation procedure called Tk_Cr eat eW ndow.
This procedureissimilar to Tk_Cr eat eW ndowkr onPat h except that the new win-
dow’s name is specified a bit differently. See the reference documentation for details.

Setting a window’ s class

The procedure Tk_Set Cl ass assigns aparticular class name to awindow. For example,
Tk_Set Cd ass(tkwi n, "Foo");

sets the class of window t kwi n to “Foo”. Class names are used by Tk for several pur-

poses such as finding options in the option database and event bindings. You can use any

string whatsoever as aclassnamewhenyouinvoke Tk_Set C ass, but you should make

sure thefirst letter is capitalized: Tk assumesin several places that uncapitalized names

are window names and capitalized names are classes.

DRAFT (7/10/93): Distribution Restricted

332 Creating Windows
37.4 Deleting windows
The procedure Tk_Dest r oyW ndowtakesa Tk_W ndow as argument and deletes the
window. It also deletes all of the window’s children recursively. Deleting the main win-
dow of an application will delete al of the windows in the application and usually causes
the application to exit.
37.5 Basic operations on Tk_Windows

Given atextua path name for awindow, Tk_NaneToW ndow may be used to find the
Tk_W ndowtoken for the window:
Tk_W ndow Tk_NaneToW ndow Tcl _Interp *interp, char *pathNane,
Tk_W ndow t kwi n);

Pat hNane isthe name of the desired window, suchas*“. a. b. ¢”,andt kwi n isatoken
for any window in the application of interest (it isn't used except to select a specific appli-
cation). Normally Tk_NanmeToW ndow returns atoken for the given window, but if no
such window existsit returns NULL and leaves an error message ini nt er p- >resul t.

Tk maintains several pieces of information about each Tk_ W ndowand it providesa
set of macros that you can use to access the information. See Table 37.2 for a summary of
all the macros. Each macro takesa Tk_W ndow as an argument and returns the corre-
sponding piece of information for the window. For exampleif t kwi nisaTk_W ndow
then

Tk_W dt h(t kwi n)

returns an integer value giving the current width of t kwi n in pixels. Here are afew of the

more commonly used macros:

e Tk_W dt hand Tk_Hei ght returnthewindow’s dimensions; thisinformation is used
during redisplay for purposes such as centering text.

* Tk_W ndow d returnsthe X identifier for the window; it is needed when invoking
Xlib procedures during redisplay.

¢ Tk_Di spl ay returnsapointer to Xlib’'sDi spl ay structure corresponding to the
window; it is aso needed when invoking Xlib procedures.

Some of the macros, like Tk_| nt er nal Bor der W dt h and Tk_ReqW dt h, are only
used by geometry managers (see Chapter 43) and otherssuch as Tk_ Vi sual arerarely
used by anyone.

DRAFT (7/10/93): Distribution Restricted

37.6 Create procedures

333

Macro Name Result Type Meaning
Tk_Attributes XSet W ndowAt tri butes | window attributes such as border pixel
* and cursor.

Tk_Changes XW ndowChanges * Window position, size, stacking order.

Tk_d ass Tk _Uud Name of window’s class.

Tk_Col or map Col or map Colormap for window.

Tk_Dept h i nt Bits per pixel.

Tk_Di spl ay Di spl ay X display for window.

Tk_Hei ght i nt Current height of window in pixels.

Tk_I nternal BorderWdth | int Width of internal border in pixels.

Tk_I| siMapped i nt 1if window mapped, O otherwise.

Tk_| sTopLevel i nt 1if top-level, O if internal.

Tk_Name Tk_Ui d Name within parent. For main window,
returns application name.

Tk_Par ent Tk_W ndow Parent, or NULL for main window.

Tk_Pat hNane char * Full path name of window.

Tk_RegqW dt h i nt Requested width in pixels.

Tk_ReqHei ght i nt Requested height in pixels.

Tk_Screen Screen * X Screen for window.

Tk_Scr eenNunber i nt Index of window’s screen.

Tk_Vi sual Vi sual * Information about window’s visual char-
acteristics.

Tk_Wdth i nt Current width of window in pixels.

Tk_W ndowi d W ndow X identifier for window.

Tk_X i nt X-coordinate within parent window.

TK_Y i nt Y-coordinate within parent window.

Table 37.2. Macros defined by Tk for retrieving window state. Each macro takesaTk_W ndowas
argument and returns aresult whose type is given in the second column. All of these macros are fast
(they simply return fields from Tk’s internal structures and don’t require any interactions with the X

server).

37.6 Create procedures

The create procedure for awidget must do five things: create anew Tk_W ndow; create
and initialize awidget record; set up event handlers; create awidget command for the wid-
get; and process configuration options for the widget. The create procedure should be the
command procedure for a Tcl command named after the widget's class, and itscl i ent -

DRAFT (7/10/93): Distribution Restricted

334

Creating Windows

Dat a argument should be the Tk_W ndowtoken for the main window of the application
(thisis needed in order to create anew Tk_W ndow in the application).

Figure 37.1 showsthe codefor Squar eCrd, which isthe create procedure for square
widgets. After checking its argument count, Squar eCrd creates a new window for the
widget and invokes Tk_Set Cl ass toassignit aclass of “Squar e”. The middle part of
Squar eCnd allocates awidget record for the new widget and initializesit. The widget
record for squares has the following definition:

typedef struct {
Tk_W ndow t kwi n;
Di spl ay *di spl ay;
Tcl _Interp *interp;
int x, vy;
int size;
i nt border Wdt h;

Tk_3DBor der bgBor der;
Tk_3DBor der f gBorder;

int relief;

CC gc;

i nt updat ePendi ng;
} Square;

Thefirst field of the record isthe Tk_ W ndowfor the widget. The next field, di spl ay,
identifies the X display for the widget (it's needed during cleanup after the widget is
deleted). | nt er p holds a pointer to the interpreter for the application. Thex andy fields
give the position of the upper-left corner of the square relative to the upper-left corner of
the window, and the si ze field specifies the square’'s sizein pixels. The last six fields are
used for displaying the widget; they’ll be discussed in Chapters 38 and 40.

After initializing the new widget record Squar eCnd callsTk_Cr e-
at eEvent Handl er ; thisarranges for Squar eEvent Pr oc to be called whenever the
widget needs to be redrawn or when various other events occur, such as deleting itswin-
dow or changing its size; events will be discussed in more detail in Chapter 39. Next
Squar eCnd calls Tcl _Cr eat eConmrand to create the widget command for the wid-
get. The widget's name is the name of the command, Squar eW dget Cnd isthe com-
mand procedure, and a pointer to thewidget recordisthecl i ent Dat a for the command
(using a pointer to the widget record ascl i ent Dat a allowsasingle C procedure to
implement the widget commands for all square widgets; Squar eW dget Command will
receive adifferent cl i ent Dat a argument depending on which widget command was
invoked). Then Squar eCd calls Conf i gur eSquar e to process any configuration
options specified as arguments to the command; Chapter 38 describes how the configura-
tion options are handled. If an error occursin processing the configuration options then
Squar eCnd destroys the window and returns an error. Otherwise it returns success with
the widget’s path name as result.

DRAFT (7/10/93): Distribution Restricted

37.6 Create procedures 335

int SquareCnd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Tk_W ndow mai n = (Tk_W ndow) clientDat a;
Square *squarePtr;
Tk_W ndow t kwi n;

if (argc < 2) {
Tcl _AppendResul t (interp, "wong # args: should be \"",
argv[0], " pathName ?options?\"", (char *) NULL);
return TCL_ERROR,
}

tkwin = Tk_Creat eW ndowFr onPat h(i nterp, main, argv[1],
(char *) NULL);
if (tkwin == NULL) {
return TCL_ERROR,

}
Tk_Set C ass(t kwi n, "Square");

squarePtr = (Square *) nall oc(sizeof (Square));
squarePtr->tkwin = tkw n;

squarePtr->di splay = Tk_Di spl ay(tkw n);
squarePtr->interp = interp;
squarePtr->x = 0;

squarePtr->y = 0;

squarePtr->size = 20;

squar ePt r- >bgBorder = NULL;

squar ePtr->f gBorder = NULL;

squar ePtr->gc = None;

squar ePt r - >updat ePendi ng = O;

Tk_Cr eat eEvent Handl er (t kwi n,
Exposur eMask]| St ruct ureNot i f yMask, SquareEvent Proc,
(dientData) squarePtr);
Tcl _Creat eCommand(i nterp, Tk_Pat hName(tkwi n),
Squar eW dget Cnd, (ClientData squarePtr),
(Tcl _CndDel eteProc *) NULL);
i f (ConfigureSquare(interp, squarePtr, argc-2, argv+2, 0)
I= TCL_CK) {
Tk_DestroyW ndow(squar ePtr->t kwi n);
return TCL_ERROR
}
interp->result = Tk_Pat hNane(tkw n);
return TCL_OK;

Figure 37.1. The create procedure for square widgets. This procedure is the command procedure
for the squar e command.

DRAFT (7/10/93): Distribution Restricted

336

Creating Windows

37.7 Delayed window creation

Tk _Cr eat eMai nW ndowand Tk_Cr eat eW ndowFr onPat h create the Tk data
structures for awindow, but they do not communicate with the X server to create an actual
X window. If you createa Tk_W ndow and immediately fetch its X window identifier
using Tk_W ndowl d, theresult will be None. Tk doesn’t normally create the X window
for aTk_W ndow until the window is mapped, which is normally done by a geometry
manager (see Chapter 43). The reason for delaying window creation is performance.
When aTk_W ndowisinitially created, all of its attributes are set to default values.
Many of these attributes will be modified almost immediately when the widget configures
itself. It's more efficient to delay the window’s creation until al of its attributes have been
set, rather than first creating the window and then asking the X server to modify the
atributes later.

Delayed window creation is normally invisible to widgets, since the only time awid-
get needs to know the X identifier for awindow iswhen it invokes Xlib procedures to dis-
play it. This doesn’t happen until after the window has been mapped, so the X window
will have been created by then. If for some reason you should need the X window identi-
fier before a Tk_ W ndow has been mapped, you can invoke Tk_MakeW ndowExi st :

voi d Tk_MakeW ndowExi st (t kwi n);
Thisforcesthe X window for t kwi n to be created immediately if it hasn't been created
yet. Once Tk_MakeW ndowExi st returns, Tk_W ndow d can be used to retrieve the
W ndowtoken for it.

DRAFT (7/10/93): Distribution Restricted

Chapter 38
Configuring Widgets

38.1

The phrase “configuring a widget” refers to all of the setup that must be done prior to actu-
ally drawing the widges$ contents on the screen. A widget is configured initially as part of
creating it, and it may be reconfigured by invoking its widget command. One ofgéstlar
components of configuring a widget is processing configuration options such as
“-borderw dt h 1ni. For each option the textual value must be translated to an inter-
nal form suitable for use in the widget. For example, distances specified in floating-point
millimeters must be translated to integer pixel values and font names must be mapped to
correspondingKFont St r uct structures. Configuring a widget also includes other tasks
such as preparing X graphics contexts to use when drawing the widget and setting
attributes of the widget'window such as its background calor

This chapter describes the Tk library procedures for configuring widgets, and it pre-
sents the square widgetonfigure procedure and widget command procedure. Chapter 40
will show how to draw a widget once configuration is complete.

Tk_ConfigureW idget

Tk provides three library procedurd¥_Conf i gur eW dget , Tk_Conf i gur e-

I nf o, andTk_Fr eeOpt i ons, that do most of the work of processing configuration
options (seedble 38.1). ® use these procedures you first createrdiguration tablehat
describes all of the configuration options supported by your new widget class. When creat-
ing a new widget, you pass this tabléelto Confi gur eW dget along withar gc/

ar gv information describing the configuration options (i.e. all tlyeigents in the cre-

ation command after the widget namejuMalso pass in a pointer to the widget record for

337

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

338 Configuring Widgets

int Tk_ConfigureWdget(Tcl_Interp *interp, Tk_W ndow tkw n,
Tk_Confi gSpec *specs, int argc, char *argv[], char *w dgRec,
int flags)

Processes a set of arguments from a Tcl command (ar gc and ar gv) using a
table of alowable configuration options (specs) and sets the appropriate
fiels of awidget record (Wi dgRec). Tkwi n isthe widget's window. Nor-
mally returns TCL_OK; if an error occurs, returns TCL_ ERROR and leaves
an error messageini nt er p- >r esul t . Flagsisnormally 0 or TK_CON-
FI G_ARGV_ONLY (see reference documentation for other possibilities).

int Tk_Configurelnfo(Tcl_Interp *interp, TKk_Wndow tkw n,

Tk_Confi gSpec *specs, char *w dgRec, char * argvNane, fl ags)
Finds the configuration option in specs whose command-line nameis
ar gvNane, locates the value of that option inwi dgRec, and generatesin
i nterp->resul t alist describing that configuration option. If
ar gvNane isNULL, generates alist of lists describing al of the optionsin
specs. Normally returns TCL_OK; if an error occurs, returns TCL_ERROR
and leaves an error message ini nt er p- >r esul t. Fl ags isnormally O
(see the reference documentation for other possibilities).

Tk_FreeOpti ons(Tk_Confi gSpec *specs, char *w dgRec,
Di spl ay *display, int flags)
Frees up any resourcesinwi dgRec that are used by specs. Di spl ay
must be the widget's display. FI ags isnormally 0 but can be used to select
particular entriesin specs (see reference documentation for details).

int Tk_Ofset(type, field)
Thisisamacro that returns the offset of afield named f i el d within astruc-
ture whose typeist ype. Used when creating configuration tables.

Table 38.1. A summary of Tk_Conf i gur eW dget and related procedures and macros.

thewidget. Tk_Conf i gur eW dget processes each option specified inar gv according
to the information in the configuration table, converting string values to appropriate inter-
nal forms, all ocating resources such asfontsand colorsif necessary, and storing the results
into the widget record. For optionsthat aren’t explicitly specifiedinar gv, Tk_Conf i g-
ur eW dget checksthe option database to seeif avalue is specified there. For options
that still haven't been set, Tk_Conf i gur eW dget uses default values specified in the
table.

When the conf i gur e widget command isinvoked to change options, you call
Tk_Conf i gur eW dget againwith thear gc/ar gv information describing the new
option values. Tk_Conf i gur eW dget will process the arguments according to the
table and modify the information in the widget record accordingly. When the conf i g-
ur e widget command isinvoked to read out the current settings of options, you call
Tk_Confi gur el nf o. It generates a Tcl result describing one or all of the widget's

DRAFT (7/10/93): Distribution Restricted

38.1 Tk_ConfigureWidget 339

38.1.1

options in exactly the right form, so all you have to do is return this result from the widget
command procedure.

Finally, when a widget is deleted you invokel _Fr eeOpti ons. Tcl _Fr eeOp-
ti ons scans through the table to find options for which resources have been allocated,
such as fonts and colors. For each such option it uses the information in the widget record
to free up the resource.

Tk_ConfigSpec tables

Most of the work in processing options is in creating the configuration table. The table is
an array of records, each with the following structure:
typedef struct {

int type;

char *ar gvNane;

char *dbNane;

char *dbd ass;

char *def Val ue;

int offset;

i nt specFl ags;

Tk_CustonOption *custonPtr;

} Tk_Confi gSpec;
Thet ype field specifies the internal form into which the optsostring value should be
converted. For exampl&K_CONFI G_|I NT means the optios'value should be converted
to an integer an@iK_CONFI G_COLOR means that the optigwalue should be converted
to a pointer to aXCol or structure. FOTK_CONFI G_I NT the option$ value must have
the syntax of a decimal, hexadecimal, or octal integer anBkioCONFI G_COLOR the
option’s value must have one of the forms for colors described in Section XXX. For
TK_CONFI G_COLCOR Tk will allocate anXCol or structure, which must later be freed
(e.g. by callingTk_Fr eeQpt i ons). More than 20 dferent option types are defined by
Tk; see the reference documentation for details on each of the supported types.
Ar gvNane is the optiors name as specified on command lines, e.g.
“- background” or “- f ont ”. ThedbNane anddbCl ass fields give the optios’
name and class in the option database.d&ié/al ue field gives a default value to use
for the option if it isnt specified on the command line and theretiawalue for it in the
option databaséNULL means there is no default for the option.
Theof f set field tells where in the widget record to store the converted value of the

option. It is specified as a byte displacement from the beginning of the reoarshauld
use theTk O f set macro to generate values for this field. For example,

Tk_Of fset (Square, relief)
produces an appropriatefsdt for ther el i ef field of a record whose type $gjuar e.
ThespecFl ags field contains an OR-ed combination of flag bits that provide addi-
tional control over the handling of the option. A few of the flags will be discussed below;
see the reference documentation for a complete listing. Fittadlyust onPt r field pro-

DRAFT (7/10/93): Distribution Restricted

340 Configuring Widgets

vides additional information for application-defined options. It's only used when the type
isTK_CONFI G_CUSTOMand should be NULL in other cases. See the reference documen-
tation for details on defining custom option types.

Here isthe option table for square widgets:

Tk_Confi gSpec configSpecs[] = {
{ TK_CONFI G_BORDER, "-background", "background",
" Background",
"#cdb79e", Tk_Of fset(Square, bgBorder),
TK_CONFI G_COLOR_ONLY, (Tk_CustonmOption *) NULL},
{ TK_CONFI G_BORDER, "-background", "background",
"Background", "white", Tk_Offset(Square, bgBorder),
TK_CONFI G_ MONO _ONLY, (Tk_CustomOption *) NULL},
{ TK_CONFI G_SYNONYM "-bd", "borderWdth", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},
{ TK_CONFI G_SYNONYM "-bg", "background", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustonDption *) NULL},
{TK_CONFI G_PI XELS, "-borderw dth", "borderWdth",
"BorderWdth", "1nf', Tk_Ofset(Square, borderWdth),
0, (Tk_CustonOption *) NULL},
TK_CONFI G_SYNONYM "-fg", "foreground", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},
{TK_CONFI G_BORDER, "-foreground", "foreground",
"Foreground", "#b03060", Tk_Offset(Square, fgBorder),
TK_CONFI G_COLOR_ONLY, (Tk_CustonOption *) NULL},
{TK_CONFI G_BORDER, "-foreground", "foreground",
"Foreground", "black", Tk_Offset(Square, fgBorder),
TK_CONFI G_ MONO ONLY, (Tk_CustomOption *) NULL},
{TK_CONFI G_ RELI EF, "-relief", "relief", "Relief",
"rai sed", Tk _Ofset(Square, relief), O,
(Tk_CustomOption *) NULL},
{TK_CONFI G_END, (char *) NULL, (char *) NULL, |,
(char *) NULL, (char *) NULL, 0, O,
(Tk_CustomOption *) NULL}
b
Thistable illustrates three additional features of Tk_Conf i gSpecs structures. First,
there are two entries each for the - backgr ound and - f or egr ound options. Thefirst
entry for each option hasthe TK_CONFI G_COLOR_ONLY flag set, which causes Tk to
use that option if the display isacolor display and to ignore it if the display is mono-
chrome. The second entry specifiesthe TK_CONFI G_MONO_ONLY flag so it isonly used
for monochrome displays. This feature allows different default values to be specified for
color and mono displays (the current color model for the window determines whether the
it considered to be color or monochrome; see Section XX X). Second, the options - bd, -
bg, and - f g havetype TK_CONFI G_SYNONYM This meansthat each of these optionsis
asynonym for some other option; the dbNane field identifies the other option and the
other fields are ignored. For example, if the - bd option is specified with the above table,

Tk will actualy use the table entry for the - bor der wi dt h option. Third, the last entry

DRAFT (7/10/93): Distribution Restricted

38.1 Tk_ConfigureWidget 341

in the table must have type TK_CONFI G_END; Tk depends on thisto locate the end of the
table.

38.1.2 Invoking Tk _ConfigureW idget
Supposethat Tk_Conf i gur eW dget isinvoked asfollows:

Tcl _Interp *interp;
Tk_W ndow t kwi n;

char *argv[] = {"-relief", "sunken", "-bg", "blue"};
Square *squarePtr;
i nt code;

code = Tk_Confi gureWdget (i nterp, tkw n, configSpecs,
4, argv, (char *) squarePtr, 0);

A call much like thiswill occur if a square widget is created with the Tcl command

square .s -relief sunken -bg bl ue
The-rel i ef optionwill be processed according to type TK_CONFI G_RELI EF, which
dictates that the option’svalue must be avalid relief, such as“r ai sed” or “sunken”. In
this case the value specified issunken; Tk_Conf i gur eW dget convertsthis string
value to the integer value TK_RELI EF_SUNKEN and stores that value in
squar ePtr->relief.The-bg option will be processed according to theconf i g-
Specs entry for - backgr ound, which hastype TK_CONFI G_BORDER. Thistype
requires that the option’s value be avalid color name; Tk creates a data structure suitable
for drawing graphicsin that color int kwi n, and it computes additional colors for draw-
ing light and dark shadows to produce 3-dimensional effects. All of thisinformation is
stored in the new structure and atoken for that structure is stored in the bgBor der field
of squar ePt r. In Chapter 40 you'll see how thistoken is used to draw the widget.

Sincethe - bor derwi dt h and - f or egr ound options weren't specified in ar gv,
Tk_Conf i gur eW dget looksthem up in the option database using the information for
those optionsin conf i gSpecs. If it finds valuesin the option database then it will use
them in the same way as if they had been supplied in ar gv.

If an option isn’t specified in the option database then Tk_Conf i gur eW dget uses
the default value specified in itstable entry. For example, for - bor der wi dt h it will use
the default value “ 1nf'. Since the option hastype TK_CONFI G_PI XELS, this string must
specify a screen distance in one of the forms described in Section XXX. “1ni specifiesa
distance of one millimeter; Tk converts this to the corresponding number of pixels and
storesthe result as an integer in squar ePt r - >bor der W dt h. If the default value for
anoption isNULL then Tk_Conf i gur eW dget doesnothing at all if thereisno value
in either ar gv or the option database; the value in the widget record will retain whatever
valueit had when Tk_Conf i gur eW dget isinvoked.

Note: If an entry in the configuration table has no default value then you must initialize the
corresponding field of the widgeataod befoe invokingTk _Conf i gur eW dget . If

DRAFT (7/10/93): Distribution Restricted

342

Configuring Widgets

38.1.3

38.1.4

38.1.5

there is a default value then you need not initialize the field in the widget record since
Tk_Confi gur eW dget will always store a proper value there.

Errors

Tk_Conf i gur eW dget normally returns TCL_OK. If an error occurs then it returns
TCL_ERROR and leaves an error messageini nt er p- >r esul t . The most common
form of error is avalue that doesn’t make sense for the option type, such as“abc” for the
- bd option. Tk_Conf i gur eW dget returns as soon as it encounters an error, which
means that some of the fields of the widget record may not have been set yet; these fields
will beleft in an initialized state (such as NULL for pointers, O for integers, None for X
resources, etc.).

Reconfiguring

Tk_Confi gur eW dget getsinvoked not only when awidget is created but also during
theconf i gur e widget command. When reconfiguring you probably won’t want to con-
sider the option database or default values. You'll want to process only the optionsthat are
specified explicitly inar gv, leaving al the unspecified options with their previous values.
To accomplish this, specify TK_CONFI G_ARGV_ONLY asthelast argument to Tk_Con-
figureWw dget:
code = Tk_ConfigureWdget (i nterp, tkw n, configSpecs,
argc, argv, (char *) squarePtr,
TK_CONFI G_ARGV_ONLY) ;

Tk _Configurelnfo

If aconfi gur e widget command isinvoked with a single argument, or with no argu-
ments, then it returns configuration information. For example, if . s isasquare widget
then

.s configure -background
should return alist of information about the - backgr ound option and

.s configure
should return alist of lists describing all the options, as described in Section XX X.
Tk_Conf i gur el nf o does all the work of generating thisinformation in the proper for-
mat. For the sguare widget it might be invoked as follows:

code = Tk_Configurelnfo(interp, tkw n, configSpecs,

(char *) squarePtr, argv[2], 0);

Ar gv[2] specifiesthe name of a particular option (e.g. - backgr ound in thefirst
example above). If information is to be returned about all options, asin the second exam-
ple above, then NULL should be specified asthe option name. Tk_Conf i gur el nf o sets
i nt er p->resul t tohold the proper value and returns TCL_ OK. If an error occurs

DRAFT (7/10/93): Distribution Restricted

38.2 Resource caches 343

38.1.6

38.1.7

38.2

(because a bad option name was specified, for example) then Tk_Conf i gur el nf o
stores an error messageini nt er p- >r esul t and returns TCL_ERROR. In either case,
the widget command procedure can leavei nt er p- >r esul t asitisand return code as
its completion code.

Tk_FreeOptions

Thelibrary procedure Tk_Fr eeOpt i ons isusually invoked after awidget is deleted in
order to clean up its widget record. For some option types, such as TK_CONFI G_BOR-
DER, Tk_Conf i gur eW dget alocates resources which must eventually be freed.
Tk_FreeOpt i ons takes care of this:

voi d Tk_FreeOpti ons(Tk_Confi gSpec *specs, char *wi dgRec,

Di spl ay *display, int flags);

Specs andwi dgRec should bethe sameasin callsto Tk_ConfigureWidget. Di spl ay
identifiesthe X display containing the widget (it's needed for freeing certain options) and
f I ags should normally be O (see the reference documentation for other possibilities).
Tk_FreeOpt i ons will scanspecs looking for entriessuch as TK_CONFI G_BORDER
whose resources must be freed. For each such entry it checks the widget record to be sure
aresource is actually allocated (for example, if the value of a string resourceis NULL it
means that no memory is allocated). If thereis aresource allocated then Tk_Fr eeOp-
t i ons passesthe value from the widget record to an appropriate procedure to free up the
resource and resets the value in the widget record to a state such asNUL L to indicate that it
has been freed.

Other uses for configuration tables

Configuration tables can be used for other things besides widgets. They are suitable for
any situation where textual information must be converted to an internal form and stored
in fields of a structure, particularly if the information is specified in the same form as for
widget options, e.g.

-background blue -width 1m
Tk uses configuration tables internally for configuring menu entries, for configuring can-
vasitems, and for configuring display attributes of tagsin text widgets.

Resource caches

The X window system provides a number of different resources for applications to use.
Windows are one example of aresource; other examples are graphics contexts, fonts, pix-
maps, colors, and cursors. An application must allocate resources before using them and
free them when they’ re no longer needed. X was designed to make resource all ocation and

DRAFT (7/10/93): Distribution Restricted

344

Configuring Widgets

38.2.1

deallocation as cheap as possible, but it is still expensive in many situations because it
requires communication with the X server (for example, font allocation requires commu-
nication with the server to make sure the font exists). If an application uses the same
resource in several different places (e.g. the same font in many different windows) it is
wasteful to allocate separate resources for each use: this wastes time communicating with
the server and it wastes space in the X server to keep track of the copies of the resource.

Tk provides a collection of resource caches in order to reduce the costs of resource
management. \When your application needs a particular resource you shouldn’t call Xlib to
alocateit; call the corresponding Tk procedure instead. Tk keepstrack of all the resources
used by the application and allows them to be shared. If you use the same font in many dif-
ferent widgets, Tk will call X to allocate afont for the first widget, but it will re-use this
font for all the other widgets. When the resource is no longer needed anywhere in the
application (e.g. all the widgets using the font have been destroyed) then Tk will invoke
the Xlib procedure to free up the resource. This approach savestime aswell asmemory in
the X server.

If you allocate aresource through Tk you must treat it as read-only since it may be
shared. For example, if you allocate a graphics context with Tk_Get GCyou must not
change the background color of the graphics context, since thiswould affect the other uses
of the graphics context. If you need to modify aresource after creating it then you should
not use Tk’s resource caches; call Xlib directly to allocate the resource so that you can
have a private copy.

Most of the resources for awidget are allocated automatically by Tk_Conf i gur e-
W dget , and Tk_Conf i gur eW dget usesthe Tk resource caches. The following sub-
sections describe how to use the Tk resource caches directly, without going through
Tk_Confi gur eW dget .

Graphics contexts

Graphics contexts are the resource that you are most likely to allocate directly. They are
needed whenever you draw information on the screen and Tk_Conf i gur eW dget
does not provide facilities for allocating them. Thus most widgets will need to alocate a
few graphics contextsin their configure procedures. The procedure Tk_Get GCallocatesa
graphics context and is similar to the Xlib procedure XCr eat e GC:

GC Tk_Get GC(Tk_W ndow t kwi n, unsi gned | ong val ueMask,

XGCVal ues *val uePtr)

Thet kwi n argument specifies the window in which the graphics context will be used.
Val ueMask and Val uePt r specify the fields of the graphics context. Val ueMask is
an OR-ed combination of bits such as GCFor egr ound or GCFont that indicate which
fieldsof val uePt r are significant. Val uePt r specifies values of the selected fields.
Tk _Get GCreturnsthe X resource identifier for a graphics context that matchesval ue-
Mask and val uePt r. The graphics context will have default valuesfor all of the unspec-
ified fields.

DRAFT (7/10/93): Distribution Restricted

38.2 Resource caches 345

38.2.2

When you'’ re finished with a graphics context you must free it by calling
Tk_FreeGC:
Tk_FreeGC(Di spl ay *di splay, GC gc)
Thedi spl ay argument indicates the display for which the graphics context was allo-
cated and the gc argument identifies the graphics context (gc must have been the return
value from some previous call to Tk_Get GC). There must be exactly one call to
Tk _FreeGCfor each cal to Tk_Get GC.

Other resources

Although resources other than graphics contexts are normally allocated and deallocated
automatically by Tk_Conf i gur eW dget and Tk_Fr eeQpt i ons, you can also alo-
cate them explicitly using Tk library procedures. For each resource there are three proce-
dures. Thefirst procedure (such as Tk_Get Col or) takes atextual description of the
resource in the same way it might be specified as a configuration option and returns a suit-
able resource or an error. The second procedure (such as Tk_Fr eeCol or) takesa
resource allocated by the first procedure and freesit. The third procedure takes a resource
and returns the textual description that was used to allocateit. The following resources are
supported in this way:

Bitmaps: the procedures Tk _CGet Bi t map, Tk_Fr eeBi t map, and Tk_Namef -

Bi t map manage Pi xmap resources with depth one. You can also invoke Tk_ De-

fi neBi t map to create new internally-defined bitmaps, and Tk_Si zeOf Bi t map

returns the dimensions of a bitmap.

Colors: the procedures Tk_Get Col or, Tk_Fr eeCol or, and Tk_NaneCf Col or

manage XCol or structures. You can also invoke Tk_Get Col or ByVal ue to specify

acolor with integer intensities rather than a string.

Cursors: the procedures Tk_Get Cur sor, Tk_Fr eeCur sor, and

Tk_NameOf Cur sor manage Cur sor resources. You can also invoke Tk_Get Cur -

sor Fr onDat a to define a cursor based on binary data in the application.

Fonts: the procedures Tk_Cet Font St r uct , Tk_NameOf Font St r uct , and

Tk_Fr eeFont St r uct manage XFont St r uct structures.

3-D borders: the procedures Tk_Get 3DBor der, Tk_Fr ee3DBor der, and

Tk_NameOf 3DBor der manage Tk_3DBor der resources, which are used to draw

objects with beveled edges that produce 3-D effects. Associated with these procedures

are other procedures such as Tk_Dr aw3DRect angl e that draw objects on the screen

(see Section 40.3). In addition you can invoke Tk__3DBor der Col or to retrieve the

XCol or structure for the border’s base color.

DRAFT (7/10/93): Distribution Restricted

346

Configuring Widgets

38.3

Tk_Uids

Note:

38.4

When invoking procedures like Tk_Get Col or you passin atextual description of the
resource to allocate, such as“r ed” for acolor. However, thistextual description isnot a
normal C string but rather aunique identifierwhich is represented with the type Tk_Ui d:
typedef char *Tk_Ui d;
A Tk_Ui dislikean atomin Lisp. It isactually a pointer to a character array, just like a
normal C string, and a Tk _Ui d can be used anywhere that a string can be used. However,
Tk_Ui d’s havethe property that any two Tk_Ui d’swith the same string value also have
the same pointer value: if a and b are Tk_Ui d’sand
(strcnp(a, b) == 0)
then
(a == b)
Tk uses Tk_Ui d’sto specify resources because they permit fast comparisons for equality.

If youuse Tk_Confi gur eW dget to allocate resources then you won't have to
worry about Tk_ Ui d’s (Tk automatically translates strings from the configuration table
into Tk_Ui d’s). But if you call procedureslike Tk__Get Col or directly then you'll need
touse Tk_Get Ui d to turn strings into unique identifiers:

Tk_Uid Tk_Get Ui d(char *string)
Given astring argument, Tk_Get Ui d returnsthe corresponding Tk__Ui d. It just keepsa
hash table of all unique identifiers that have been used so far and returns a pointer to the
key stored in the hash table.
If you pass strings dactly to pocedues likeTk _Get Col or without converting them to
unique identifiers then you will get ueglictable esults. One common symptom is that the
application uses the samesouce over and over even though you think you've specified
different values for each useypically what happens is that the same string buffer was

used to star all of the diffeent values. Tk just compes the string addss rather than its
contents, so the values appear to Tk to be the same.

Other translators

Tk provides several other library procedures that translate from stringsin various formsto
internal representations. These procedures are similar to the resource managers in Section
38.2 except that the internal forms are not resources that require freeing, so typically there
isjust a“get” procedure and a“name of” procedure with no “free” procedure. Below isa
quick summary of the availabile translators (see the reference documentation for details):

Anchors. Tk_Get Anchor and Tk_NaneCOf Anchor trandate between strings con-
taining an anchor positions such as“cent er ” or “ne” and integers with values
defined by symbols such as TK_ANCHOR _CENTER or TK_ANCHOR _NE.

DRAFT (7/10/93): Distribution Restricted

38.5 Changing window attributes 347

Cap styles: Tk_Get CapSt yl e and Tk_NameOf CapSt yl e trandate betwen

strings containing X cap styles (“but t ”, “pr oj ecti ng”, or “r ound”) and integers
with values defined by the X symbols CapBut t , CapPr oj ect i ng, and CapRound.

Join styles: Tk_Joi nStyl e and Tk_NameOf Joi nSt yl e translate between strings

containing X join styles (“bevel 7, “mi t er”, or “r ound”) and integers with values
defined by the X symbolsJoi nBevel ,Joi nM t er, and Joi nRound.

Justify styles: Tk_Get Justi fy and Tk_NaneCf Just i fy trandate between
strings containing styles of justification (“1 eft ", “ri ght”,“center”,or“fill")
and integers with values defined by the symbols TK_JUSTI FY_LEFT, TK_JUSTI -

FY_RI GHT, TK_JUSTI FY_CENTER, and TK_JUSTI FY_FI LL.
Reliefs: Tk_Get Rel i ef and Tk_NameOf Rel i ef trandate between strings con-

taining relief names (“r ai sed”, “sunken”, “f | at ”, “gr oove”, or “ri dge”) and
integers with values defined by the symbols TK_RELI EF_RAI SED, TK_RELI EF_-

SUNKEN, etc.

Screen distances; Tk_Get Pi xel s and Tk_Get Scr eenMMprocess strings that con-
tain screen distances in any of the forms described in Section XXX, suchas“1. 5ni or
“2". Tk_Cet Pi xel s returnsan integer result in pixel units, and Tk_Get Scr eenMM
returns areal result whose units are millimeters.

Window names. Tk__NameToW ndowtranslates from a string containing a window
path name such as“. dl g. qui t ” to the Tk_W ndowtoken for the corresponding
window.

X atoms. Tk_I nt er nAt omand Tk _Get At onNane trandate between strings con-
taining the names of X atoms (e.g. “RESOURCE_MANAGER”") and X At omtokens.
Tk keeps a cache of atom names to avoid communication with the X server.

38.5 Changing window attributes

Tk provides a collection of procedures for modifying awindow’s attributes (e.g. back-
ground color or cursor) and configuration (e.g. position or size). These procedures are
summarized in Table 38.2. The procedures have the same arguments as the Xlib proce-
dures with corresponding names. They perform the same functions as the Xlib procedures
except that they also retain alocal copy of the new information so that it can be returned
by the macros described in Section 37.5. For example, Tk_Resi zeW ndowis similar to
the Xlib procedure XResi zeW ndowin that it modifies the dimensions of awindow.
However, it also remembers the new dimensions so they can be accessed with the
Tk_W dt h and Tk_Hei ght macros.

Only afew of the proceduresin Table 38.2, such as Tk_Set W ndowBackgr ound,
are normally invoked by widgets. Widgets should definitely not invoke procedures like

DRAFT (7/10/93): Distribution Restricted

348

Configuring Widgets

38.6

Tk_ChangeW ndowAt t ri but es(Tk_W ndow t kwi n, unsi gned int val ue-
Mask,
XSet WndowAttributes *attsPtr)

Tk_Conf i gur eW ndow(Tk_W ndow t kwi n, unsigned int val ueMask,
XW ndowChanges *val uePtr)

Tk_Def i neCur sor (Tk_W ndow t kwi n, Cursor cursor)

Tk_MoveW ndow(Tk_W ndow tkwi n, int x, int y)

Tk_MoveResi zeW ndow(Tk_W ndow tkwin, int x, int vy,
unsigned int wi dth, unsigned int height)

Tk_Resi zeW ndow Tk_W ndow t kwi n, unsgi ned int wi dth,
unsi gned int height)

Tk_Set W ndowBackgr ound(Tk_W ndow t kwi n, unsi gned | ong pi xel)

Tk_Set W ndowBackgr oundPi xmap(Tk_W ndow t kwi n, Pi xmap pi xmap)

Tk_Set W ndowBor der (Tk_W ndow t kwi n, unsi gned | ong pi xel)

Tk_Set W ndowBor der Pi xmap(Tk_W ndow t kwi n, Pi xmap pi xmap)

Tk_Set W ndowBor der W dt h(TK_W ndow t kwi n, int w dth)

Tk_Set W ndowCol or map(Tk_W ndow t kwi n, Col or map col or nap)

Tk_Undefi neCur sor (Tk_W ndow t kwi n)

Table 38.2. Tk procedures for modifying attributes and window configuration information.
Tk_ChangeW ndowAt t ri but es and Tk_Conf i gur eW ndowallow any or al of the
attributes or configuration to be set at once (val ueMask selects which values should be set); the
other procedures set selected fields individually.

Tk_MoveW ndowor Tk_Resi zeW ndow: only geometry managers should change the
size or location of awindow.

The square configure procedure

Figure 38.1 contains the code for the square widget's configure procedure. Itsar gv argu-
ment contains pairs of strings that specify configuration options.Most of the work is done
by Tk _Confi gur eW dget . Once Tk_Conf i gur eW dget returns, Confi gur -

DRAFT (7/10/93): Distribution Restricted

38.7 The square widget command procedure 349

38.7

int ConfigureSquare(Tcl_Interp *interp, Square *squarePtr,
int argc, char *argv[], int flags) {
if (Tk_ConfigureWdget(interp, squarePtr->tkw n, configSpecs,
argc, argv, (char *) squarebPtr, flags) != TCL_OK) {
return TCL_ERROR

Tk_Set W ndowBackgr ound(squar ePt r - >t kwi n,
Tk_3DBor der Col or (squar ePtr - >bgBor der)) ;

if (squarePtr->gc == None) {

XGCVal ues gcVal ues;

gcVal ues. functi on = GXcopy;

gcVal ues. graphi cs_exposures = Fal se;

squarePtr->gc = Tk_Get GC(squarePtr->t kw n,

GCFunct i on| GCG aphi csExposures, &gcVal ues);

}
Tk_CGeonet ryRequest (squar ePtr->t kwi n, 200, 150);
Tk_Set | nt er nal Bor der (squar ePtr->t kwi n,
squar ePt r - >bor der W dt h) ;
i f (!squarePtr->updatePendi ng) {
Tk_DowWhenl dl e(Di spl aySquare, (ClientData) squarePtr);
squar ePt r - >updat ePendi ng = 1,

}
return TCL_OK;

Figure 38.1. The configure procedure for square widgets. It isinvoked by the creation procedure
and by the widget command procedure to set and modify configuration options.

eSquar e extracts the color associated with the - backgr ound option and calls
Tk_Set W ndowBackgr ound to useit as the background color for the widget's win-
dow. Then it alocates a graphics context that will be used during redisplay to copy bits
from an off-screen pixmap into the window (unless some previous call to the procedure
has already allocated the graphics context). Next Conf i gur eSquar e calsTk_Geom
et ryRequest and Tk_Set | nt er nal Bor der W dt h to provide information to its
geometry manager (thiswill be discussed in Chapter 43). Finally, it arranges for the wid-
get to be redisplayed; thiswill be discussed in Chapter 40.

The square widget command procedure

Figures 38.2 and 38.3 contain the C code for Squar eW dget Cormand, which
implements widget commands for square widgets. The main portion of the procedure con-
sistsof aseriesof i f statementsthat comparear gv[1] successively to“confi gure”,
“posi tion”,and“si ze”, which are the three widget commands defined for squares. If

DRAFT (7/10/93): Distribution Restricted

350 Configuring Widgets

int SquareWdgetCnd(CientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Square *squarePtr = (Square *) clientData;
int result = TCL_CK;

if (argc < 2) {
Tcl _AppendResul t (interp, "wong # args: should be \"",
argv[0], " option ?arg arg ...?2\"",
(char *) NULL);
return TCL_ERROR,

}

Tk_Preserve((CientData) squarePtr);
if (strcnp(argv[1l], "configure") == 0) {
if (argc == 2)
result = Tk_Configurelnfo(interp, squarePtr->tkw n,
(char *) squarePtr, (char *) NULL, 0);
} elseif (argc == 3) {
result = Tk_Configurelnfo(interp, squarePtr->tkw n,
(char *) squarePtr, argv[2], 0);
} else {
result = ConfigureSquare(interp, squarePtr,
argc-2, argv+2, TK_CONFI G_ARGV_QONLY);

}
} else if (strcnp(argv[1l], "position") == 0) {
if ((argc '=2) & & (argc !'=4)) {
Tcl _AppendResul t (i nterp,"wong # args: should be \"",
argv[0], " position ?x y?2\"", (char *) NULL);
goto error;

if (argc ==
if ((Tk_GetPixels(interp, squarePtr->tkw n,
argv[2], &squarePtr->x) != TCL_CK) ||
(Tk_Get Pi xel s(interp, squarePtr->tkw n,
argv[3], &squarebPtr->y) = TCL_OK)) {
goto error;

}
Keepl nW ndow(squarePtr);
}
sprintf(interp->result, "% %", squarePtr->x,

squarePtr->y);
} else if (strcnp(argv[1l], "size") == 0) {

Figure 38.2. Thewidget command procedure for square widgets. Continued in Figure 38.3.

DRAFT (7/10/93): Distribution Restricted

38.7 The square widget command procedure 351

if ((argc '=2) & & (argc !'= 3)) {
Tcl _AppendResul t (i nterp, "wong # args: should be \"",
argv[0], " size ?amount?\"", (char *) NULL);
goto error;

}
i f (.argc. == 3) {

int i;
if (Tk_GetPixels(interp, squarePtr->tkwi n, argv[2],
&) = TCL_OK) {
goto error;

}
if ((i <=0) || (i >100)) {
Tcl _AppendResul t (i nterp, "bad size \"", argv[2],
"\"", (char *) NULL);
goto error;
}
squarePtr->size = i;
Keepl nW ndow(squarePtr);

sprintf(interp->result, "%l", squarePtr->size);
} else {
Tcl _AppendResul t (i nterp, "bad option \"", argv[1],
"\": nust be configure, position, or size",
(char *) NULL);
goto error;

i f (!squarePtr->updat ePendi ng) {
Tk_Dowhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePt r - >updat ePendi ng = 1;

}
Tk_Rel ease((CientData) squarePtr);
return result;

error:
Tk_Rel ease((ClientData) squarePtr);
return TCL_ERROR;

Figure 38.3. Thewidget command procedure for square widgets, continued from Figure 38.2.

ar gv[1] matches one of these strings then the corresponding code is executed; other-
wise an error is generated.

Theconf i gur e widget command is handled in one three ways, depending on how
many additional argumentsit receives. If at most one additional argument is provided then
Squar eW dget Cnd calls Tk_Conf i gur el nf o to create descriptive information for
oneor all of the widget’'s configuration options. If two or more additional arguments are

DRAFT (7/10/93): Distribution Restricted

352

Configuring Widgets

voi d Keepl nW ndow Square *squarePtr) {
int i, bd;
bd = 0O;
if (squarePtr->relief !'= TK RELI EF_FLAT) {
bd = squarePtr->border Wdt h;

}
i = (Tk_Wdth(squarePtr->tkw n) - bd)
- (squarePtr->x + squarePtr->size);
if (i <0) {
squarePtr->x += i;

}
i = (Tk_Hei ght (squarePtr->tkwi n) - bd)
- (squarePtr->y + squarePtr->size);
if (i <0) {
squarePtr->y += i;
}

if (squarePtr->x < bd) {
squarePtr->x = bd;

if (squarePtr->y < bd) {
squarePtr->y = bd;
}

Figure 38.4. TheKeepl nW ndow procedure adjusts the location of the square to make sure that it
isvisible in the widget’s window.

provided then Squar eW dget Crrd passes the additional argumentsto Conf i gur -
eSquar e for processing; Squar eW dget Cnd specifiesthe

TK_CONFI G_ARGV_ONLY flag, which Conf i gur eSquar e passesonto Tk_Con-
fi gureW dget sothat options not specified explicitly by ar gv areleft as-is.

Theposi ti on andsi ze widget commands change the geometry of the square dis-
played in the widget, and they have similar implementations. If new values for the geome-
try are specified then each command calls Tk__Get Pi xel s to convert the argument(s) to
pixel distances. The si ze widget command also checks to make sure that the new sizeis
within a particular range of values. Then both commandsinvoke Keepl nW ndow, which
adjusts the position of the square if necessary to ensure that it isfully visible in the wid-
get’swindow (see Figure 38.4). Finally, the commands print the current values into
i nt er p->resul t toreturn them as result.

Squar eW dget Cd invokesthe proceduresTk_Pr eser ve and Tk_Rel ease as
away of preventing the widget record from being destroyed while the widget command is
executing. Chapter 41 will discuss these procedures in more detail. The square widget is
so simple that the calls aren't actually needed, but virtually all real widgets do need them
so | put themin Squar eW dget Cnd too.

DRAFT (7/10/93): Distribution Restricted

Chapter 39
Events

39.1

This chapter describes BKibrary procedures for event handling. The code you'll write
for event handling divides into three parts. The first part consists of code that creates event
handlers: it informs Tk that certain callback procedures should be invoked when particular
events occufThe second part consists of the callbacks themselves. The third part consists
of top-level code that invokes the Tk event dispatcher to process events.

Tk supports three kinds of events: X events, file events (e.g. a particular file has just
become readable), and timer events. Tk also allows you to tdatallbacks, which
cause procedures to be invoked when Tk runs out of other things to do; idle callbacks are
used to defer redisplays and other computations until all pending events have been pro-
cessed. Tls procedures for event handling are summarizealieT39.1.

If you are not already familiar with X events, | recommend reading about them in
your favorite Xlib documentation before reading this chapter

X events

The X window server generates a number dediint events to report interesting things
that occur in the window system, such as mouse presses or changes in as\simiow’
Chapter XXX showed how you can use §ti nd command to write event handlers as
Tcl scripts. This section describes how to write event handlers ipp@ally you'll only
use C handlers for four kinds of X events:

Expose: these events notify the widget that part or all of its window needs to be redis-
played.

353

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

354 Events

voi d Tk_Creat eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong nask,
Tk_EventProc *proc, CientData clientData)
Arranges for pr oc to be invoked whenever any of the events selected by
mask occursfort kwi n.
voi d Tk_Del et eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong nask,
Tk_EventProc *proc, CientData clientData)
Deletes the event handler that matchesmask, pr oc, andcl i ent Dat a, if
such ahandler exists.

void Tk_CreateFil eHandler(int fd, int mask, Tk_FileProc *proc,
ClientData clientData)
Arrangesfor pr oc to beinvoked whenver one of the conditionsindicated by
mask occurs for the file whose descriptor number isf d.
voi d Tk_Del et eFi |l eHandl er (i nt fd)
Deletes the file handler for f d, if one exists.

Tk_Ti mer Token Tk_CreateTi nerHandl er(int mlliseconds,
Tk_TimerProc *proc, ClientData clientData)
Arranges for pr oc to beinvoked after mi | | i seconds have elapsed.
Returns a token that can be used to cancel the callback.
voi d Tk_Del et eTi nmer Handl er (Tk_Ti ner Token t oken)
Cancelsthe timer callback indicated by t oken, if it hasn’t yet triggered.

voi d Tk_DoWhenl dl e(Tk_I dl eProc *proc, CientData clientData)
Arranges for pr oc to be invoked when Tk has nothing else to do.

voi d Tk_Cancel I dl eCal | (Tk_l dl eProc *proc, CientData clientData)
Deletes any existing idle callbacksfori dl ePr oc andcl i ent Dat a.

voi d Tk_Creat eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData)
Arrangesfor pr oc to be invoked whenever any X event isreceived by this
process.
voi d Tk_Del et eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData)
Deletes the generic handler given by pr oc andcl i ent Dat a, if sucha
handler exists.

voi d Tk_Mai nLoop(voi d)
Processes events until there are no more windows left in this process.

int Tk_DoOneEvent (i nt flags)
Processes a single event of any sort and then returns. Fl ags isnormally O
but may be used to restrict the events that will be processed or to return
immediately if there are no pending events.

Table 39.1. A summary of the Tk library procedures for event handling.

DRAFT (7/10/93): Distribution Restricted

39.1 X events 355

Conf i gureNot i fy: these events occur when the window’s size or position changes
so that it can adjust its layout accordingly (e.g. centered text may have to be reposi-
tioned).

Focusl n and FocusQut : these events notify the widget that it has gotten or lost the
input focus, so it can turn on or off its insertion cursor.

Dest royNot i fy: these events notify the widget that its window has been destroyed,
so it should free up the widget record and any associated resources.

The responses to these events are all relatively obviousand it is unlikely that a user or
application developer would want to deal with the events so it makes sense to hard-code
the responses in C. For most other events, such as key presses and mouse actions, it’s bet-
ter to define the handlersin Tcl with the bi nd command. As awidget writer you can cre-
ate class bindings to give the widget its default behavior, then users can modify the class
bindings or augment them with additional widget-specific bindings. By using Tcl as much
as possible you'll make your widgets more flexible.

The procedure Tk_Cr eat eEvent Handl er isused by widgets to register interest
in X events:

voi d Tk_Creat eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong

mask,

Tk_EventProc *proc, ClientData clientData);

Thet kwi n argument identifies a particular window and mask isan OR’ ed combination
of hitslike KeyPr essMask and St r uct ur eNot i f yMask that select the events of
interest (refer to Xlib documentation for details on the mask values that are available).
When one of the requested events occursfor t kwi n Tk will invoke pr oc to handle the
event. Pr oc must match the following prototype:

typedef void Tk_EventProc(CientData clientData, XEvent

*eventPtr);
Itsfirst argument will be the same asthecl i ent Dat a value that was passed to
Tk_Cr eat eEvent Handl er and the second argument will be a pointer to a structure
containing information about the event (see your Xlib documentation for details on the
contents of an XEvent structure). There can exist any number of event handlersfor a
given window and mask but there can be only one event handler with aparticular t kwi n,
mask, proc, andcl i ent Dat a. If aparticular event matchesthet kwi n and nask for
more than one handler then all of the matching handlers are invoked, in the order in which
they were created.

For example, the C code for the square widget deals with Expose, Conf i gur eNo-
tify,andDestroyNotify events. To process these events, the following codeis
present in the create procedure for squares (see Figure 37.1 on page 335):

Tk_Cr eat eEvent Handl er (squar ePt r - >t kwi n,

Exposur eMask| St ruct ureNot i f yMask,
Squar eEvent Proc, (CientData) squarePtr);

DRAFT (7/10/93): Distribution Restricted

356 Events

voi d SquareEventProc(C ientData clientData, XEvent *eventPtr) {
Square *squarePtr = (Square *) clientData;
if (eventPtr->type == Expose) {
if ((eventPtr->xexpose.count == 0)
&& !squar ePtr - >updat ePendi ng) {
Tk_DoWhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePtr - >updat ePendi ng = 1;

}
} else if (eventPtr->type == ConfigureNotify) {
Keepl nW ndow squar ePtr);
i f (!squarePtr->updat ePendi ng) {
Tk_DoWhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePtr - >updat ePendi ng = 1;

}
} else if (eventPtr->type == DestroyNotify) ({
Tcl _Del et eConmand(squar ePtr->i nt erp,
Tk_Pat hNanme(squar ePtr->t kwi n));

squarePtr->tkwin = NULL;

if (squarePtr->flags & REDRAW PENDI NG ({
Tk_Cancel 1 dl eCal | (Di spl aySquar e,

(dientData) squarePtr);

Tk_Eventual | yFree((d ientData) squarePtr, DestroySquare);

Figure 39.1. The event procedure for square widgets.

The Exposur eMask bit selectsExpose eventsand St r uct ur eNot i f yMask selects
both Conf i gur eNot i fy and Dest r oyNot i fy events, plus several other types of
events. The address of the widget's record isused asthe O i ent Dat a for the callback,
so it will be passed to Squar eEvent Pr oc asitsfirst argument.

Figure 39.1 contains the code for Squar eEvent Pr oc, the event procedure for
square widgets. Whenever an event occurs that matches Exposur eMask or St r uc-
tureNot i f yMask Tk will invoke Squar eEvent Pr oc. Squar eEvent Pr oc casts
itscl i ent Dat a argument back into aSquar e * pointer, then checks to see what kind
of event occurred. For Expose events Squar eEvent Pr oc arranges for the widget to
be redisplayed. For Conf i gur eNot i f y events, Squar eEvent Pr oc calsKeepl n-
W ndowto make sure that the square is still visible in the window (see Figure 38.4 on
page 352), then Squar eEvent Pr oc arranges for the widget to be redrawn. For
Dest royNot i fy events Squar eEvent Pr oc startsthe process of destroying the wid-
get and freeing its widget record; this process will be discussed in more detail in Chapter
41.

DRAFT (7/10/93): Distribution Restricted

39.2 File events 357

39.2

If you should need to cancel an existing X event handler you can invoke Tk_Del e-

t eEvent Handl er with the same arguments that you passed to Tk_Cr e-
at eEvent Handl er when you created the handler:

voi d Tk_Del et eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong

mask,

Tk_EventProc *proc, ClientData clientData);

This deletes the handler corresponding to t kwi n, mask, proc, andcl i ent Dat a so
that its callback will not be invoked anymore. If no such handler exists then the procedure
does nothing. Tk automatically deletes all of the event handlers for awindow when the
window is destroyed, so most widgets never need to call Tk_Del et eEvent Handl er.

File events

Event-driven programs like Tk applications should not block for long periods of time
while executing any one operation, since this prevents other events from being serviced.
For example, suppose that a Tk application attempts to read from its standard input at a
timewhen no input isavailable. The application will block until input appears. During this
time the process will be suspended by the operating system so it cannot service X events.
This means, for example, that the application will not be able to respond to mouse actions
nor will it be able to redraw itself. Such behavior islikely to be annoying to the user, since
he or she expectsto be able to interact with the application at any time.

File handlers provide an event-driven mechanism for reading and writing files that
may have long 1/O delays. The procedure Tk_Cr eat eFi | eHandl er createsanew file
handler:

void Tk_CreateFil eHandl er(int fd, int mask, Tk_FileProc *proc,
ClientData clientData);
Thef d argument gives the number of a POSIX file descriptor (e.g. O for standard input, 1
for standard output, and so on). Mask indicates when pr oc should be invoked. Itisan
OR’ ed combination of the following hits;

TK_READABLE meansthat Tk should invoke pr oc whenever there is data waiting to
beread onf d;

TK_WRI TABLE meansthat Tk should invoke pr oc whenever f d is capable of accept-
ing more output data;

TK_EXCEPTI ON meansthat Tk should invoke pr oc whenever an exceptional condi-
tionispresent for f d.

The callback procedure for file handlers must match the following prototype:

typedef void Tk_FileProc(CientData clientData,
i nt mask);

DRAFT (7/10/93): Distribution Restricted

358

Events

Note:

Thecl i ent Dat a argument will be the same asthecl i ent Dat a argument to
Tk_Creat eFi | eHandl er and mask will contain a combination of the bits
TK_READABLE, TK_WRI TABLE, and TK_EXCEPTI ONto indicate the state of thefile at
the time of the callback. There can exist only onefile handler for agiven file at atime; if
you call Tk_Cr eat eFi | eHandl er at atime when there exists ahandler for f d then
the new handler replaces the old one.

You can temporarily disable a file handler by setting its mask to 0. You can reset the mask
later when you want to re-enable the handler.

To delete afile handler, call Tk_Del et eFi | eHandl er withthesamef d argu-
ment that was used to create the handler:

voi d Tk_Del et eFi | eHandl er(int fd);
Thisremoves the handler for f d so that its callback will not be invoked again.

With file handlers you can do event-driven file 1/O. Rather than opening afile, reading
it from start to finish, and then closing thefile, you open thefile, create afile handler for it,
and then return. When thefile is readable the callback will be invoked. It issues exactly
one read request for the file, processes the data returned by the read, and then returns.
When the file becomes readable again (perhaps immediately) then the callback will be
invoked again. Eventually, when the entire file has been read, the file will become readable
and the read call will return an end-of-file condition. At this point the file can be closed
and the file handler deleted. With this approach, your application will still be able to
respond to X events even if there are long delays in reading thefile.

For example, wi sh usesafile handler to read commands from its standard input. The
main program for wi sh creates afile handler for standard input (file descriptor 0) with the
following statement:

Tk_Cr eat eFi | eHandl er (0, TK_READABLE, StdinProc, (O ientData)
NULL) ;
Tcl _DStri ngl ni t (&onmand) ;

In addition to creating the callback, this code initializes a dynamic string that will be used
to buffer lines of input until a complete Tcl command is ready for evaluation. Then the
main program enters the event loop as will be described in Section 39.6. When data
becomes available on standard input St di nPr oc will beinvoked. Its code is as follows:
void StdinProc(CientData clientData, int mask) {

int count, code;

char input[1000];

count = read(0, input, 1000);

if (count <= 0) {

... handle errors and end of file ...
}

Tcl _DSt ri ngAppend(&onmmrand, input, count);

if (Tcl _CrdConpl ete(Tcl _DStringVal ue(&onmmand)) {
code = Tcl _Eval (interp,

DRAFT (7/10/93): Distribution Restricted

39.3 Timer events 359

Tcl _DStringVval ue(&onmmand)) ;
Tcl _DStri ngFree(& onmand) ;

}
After reading from standard input and checking for errors and end-of file, St di nPr oc
adds the new data to the dynamic string’s current contents. Then it checksto seeif the
dynamic string contains a complete Tcl command (it won't, for example, if aline such as
“foreach i $x {"“ hasbeen entered but the body of thef or each loop hasn’t yet
been typed). If the command is complete then St di nPr oc evaluates the command and
clears the dynamic string for the next command.

Note: Itis usually best to use non-blocking I/O with file handlers, just to be absolutelthatir
I/O operations dot’block. B request non-blocking 1/0, specify the flagNONBLOCK to
thef cnt| POSIX system call. If you use file handlers for writing to files with long output
delays, such as pipes and network sockesgstential that you use use non-blocking I/O;

otherwise if you supply too much data imra t e system call the output buffers will fill
and the pocess will be put to sleep.

Note: For ordinary disk files it ish’necessary to use the event-driven apph described in this
section, sincegading and writing these files &y incurs noticeable delays. File handlers
are useful primarily for files like terminals, pipes, and network connections, which can
block for indefinite periods of time.

39.3 Timer events

Timer eventstrigger callbacks after particular time intervals. For example, widgets use
timer eventsto display blinking insertion cursors. When the cursor isfirst displayed in a
widget (e.g. becauseit just got the input focus) the widget creates atimer callback that will
trigger in afew tenths of a second. When the timer callback isinvoked it turns the cursor
off if it was on, or onif it was off, and then reschedules itself by creating a new timer call-
back that will trigger after afew tenths of a second more. This process repeats indefinitely
so that the cursor blinks on and off. When the widget wishes to stop displaying the cursor
altogether (e.g. becauseit haslost the input focus) it cancels the callback and turns the cur-
sor off.

The procedure Tk__Cr eat eTi mer Handl er creates atimer callback:

Tk_Ti mer Token Tk_CreateTi merHandl er (int mlliseconds,
Tk_TimerProc *proc, ClientData clientData);

Them | | i seconds argument specifies how many milliseconds should elapse before
the callback isinvoked. Tk_Cr eat eTi ner Handl er returnsimmediately, and its
return value is atoken that can be used to cancel the callback. After the given interval has
elapsed Tk will invoke pr oc. Pr oc must match the following prototype:

void Tk_TimerProc(C ientData clientData);

DRAFT (7/10/93): Distribution Restricted

360

Events

Note:

39.4

Its argument will bethe same asthecl i ent Dat a argument passed to Tk_Cr e-

at eTi mer Handl er. Pr oc isonly called once, then Tk deletes the callback automati-
cally. If you want pr oc to be called over and over at regular intervals then pr oc should
reschedule itself by calling Tk_Cr eat eTi mer Handl er eachtimeitisinvoked.
Thereis no guarantee that pr oc will be invoked at exactly the specified time. If the
application is busy processing other events when the specified time occursthen pr oc

won't be invoked until the next time the application invokes the event dispatcher, as
described in Section 39.6.

Tk_Del et eTi mer Handl er cancels atimer callback:
voi d Tk_Del et eTi mer Handl er (Tk_Ti mer Token t oken);

It takes a single argument, which is atoken returned by a previous call to Tk_Cr e-

at eTi mer Handl er, and deletes the callback so that it will never be invoked. It is safe
toinvoke Tk_Del et eTi mer Handl er evenif the callback has aready been invoked;
in this case the procedure has no effect.

Idle callbacks

The procedure Tk_DoWhenl dl e creates an idle callback:

voi d Tk_DoWhenl dl e(Tk_I dl eProc *proc, CientData clientData);
Thisarranges for pr oc to be invoked the next time the application becomesidle. The
application isidle when Tk’s main event-processing procedure, Tk_DoOneEvent , is
called and no X events, file events, or timer events are ready. Normally when this occurs
Tk _DoOneEvent will suspend the process until an event occurs. However, if there exist
idle callbacks then al of them areinvoked. Idle callbacks are also invoked when the
updat e Tcl command isinvoked. The pr oc for an idle callback must match the follow-
ing prototype:

typedef void Tk_ldleProc(CientData clientData);
It returns no result and takes a single argument, which will be the sasme asthecl i ent -
Dat a argument passed to Tk_DoWhenl dl e.

Tk_Cancel |1 dl eCal | deletesanidle callback so that it won't be invoked after all:
voi d Tk_Cancel I dl eCal | (Tk_Idl eProc *proc, dientData
clientData);

Tk_Cancel I dl eCal | deletesall of theidle callbacks that match i dl ePr oc and
cl i ent Dat a (there can be more than one). If there are no matching idle callbacks then
the procedure has no effect.

Idle callbacks are used to implement the delayed operations described in Section
XXX. The most common use of idle callbacks in widgetsisfor redisplay. It isgenerally a
bad ideato redisplay awidget immediately when its state is modified, since this can result
in multiple redisplays. For example, suppose the following set of Tcl commandsis
invoked to change the color, size, and location of asquare widget . s:

DRAFT (7/10/93): Distribution Restricted

39.5 Generic event handlers 361

39.5

.s configure -foreground purple

.S size 2c

.s position 1.2c 3.1c
Each of these commands modifies the widget in away that requires it to be redisplayed,
but it would be a bad idea for each command to redraw the widget. Thiswould result in
three redisplays, which are unnecessary and can cause the widget to flash as it steps
through a series of changes. It is much better to wait until al of the commands have been
executed and then redisplay the widget once. Idle callbacks provide away of knowing
when all of the changes have been made: they won't be invoked until all available events
have been fully processed.

For example, the square widget uses idle callbacks for redisplaying itself. Whenever

it notices that it needs to be redrawn it invokes the following code:

i f (!squarePtr->updatePendi ng) {

Tk_DoWhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePt r - >updat ePendi ng = 1,

}
Thisarrangesfor Di spl aySquar e to be invoked as an idle handler to redraw the wid-
get. Theupdat ePendi ng field of the widget record keeps track of whether Di spl ay-
Squar e has aready been scheduled, so that it will only be scheduled once. When
Di spl aySquar e isfinaly invoked it resetsupdat ePendi ng to zero.

Generic event handlers

The X event handlers described in Section 39.1 only trigger when particular events occur
for aparticular window managed by Tk. Generic event handlers provide access to events
that aren’t associated with a particular window, such as Mappi ngNot i fy events, and to
events for windows not managed by Tk (such as those in other applications). Generic
event handlers are rarely needed and should be used sparingly.
To create a generic event handler, call Tk_Cr eat eGeneri cHandl er:
voi d Tk_Creat eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData);
Thiswill arrange for pr oc to be invoked whenever any X event is received by the appli-
cation. Pr oc must match the following prototype:
typedef int Tk_GenericProc(CientData clientData,
XEvent *eventPtr);
Itscl i ent Dat a argument will bethe same asthecl i ent Dat a passedto Tk_Cr e-
at eGeneri cHandl er and event Pt r will be a pointer to the X event. Generic han-
dlers are invoked before normal event handlers, and if there are multiple generic handlers
then they are called in the order in which they were created. Each generic handler returns
an integer result. If the result is non-zero it indicates that the handler has completely pro-

DRAFT (7/10/93): Distribution Restricted

362

Events

Note:

39.6

cessed the event and no further handlers, either generic or normal, should be invoked for
the event.
The procedure Tk_Del et eGener i cHandl er deletes generic handlers:
Tk_Del et eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData);
Any generic handlers that match pr oc and cl i ent Dat a are removed, so that pr oc
will not be invoked anymore.
Tk_Cr eat eGeneri cHandl er does nothing to ensure that the desired events are
actually sent to the application. For example, if an application wishesto respond to events
for awindow in some other application then it must invoke XSel ect | nput to notify the
X server that it wants to receive the events. Once the events arrive, Tk will dispatch them

to the generic handler. However, an application should never invoke XSel ect | nput for
a window managed by Tk, since thiswill interfere with Tk's event management.

Invoking the event dispatcher

The preceding sections described the first two parts of event management: creating event
handlers and writing callback procedures. Thefinal part of event management isto invoke
the Tk event dispatcher, which waits for events to occur and invokes the appropriate call-
backs. If you don’t invoke the dispatcher then no events will be processed and no call-
backs will be invoked.

Tk provides two procedures for event dispatching: Tk_Mai nLoop and
Tk_DoOneEvent . Most applications only use Tk_Mai nLoop. It takes no arguments
and returns no result and it is typically invoked once, in the main program after initializa-
tion. Tk_Mai nLoop callsthe Tk event dispatcher repeatedly to process events. When all
available events have been processed it suspends the process until more events occur, and
it repeats this over and over. It returns only when every Tk_W ndow created by the pro-
cess has been deleted (e.g. after the“dest r oy . ” command has been executed). A typi-
cal main program for a Tk application will create a Tcl interpreter, call
Tk_Cr eat eMai nW ndowto create a Tk application plus its main window, perform
other application-specific initialization (such as evaluating a Tcl script to create the appli-
cation’sinterface), and then call Tk_Mai nLoop. When Tk_Mai nLoop returnsthemain
program exits. Thus Tk provides top-level control over the application’s execution and all
of the application’s useful work is carried out by event handlersinvoked viaTk _Mai n-
Loop.

The second procedure for event dispatching is Tk_DoOneEvent , which provides a
lower level interface to the event dispatcher:

int Tk_DoOneEvent (i nt flags)

Thef | ags argument isnormally O (or, equivalently, TK_ALL_EVENTS). In this case
Tk_DoOneEvent processes asingle event and then returns 1. If no events are pending

DRAFT (7/10/93): Distribution Restricted

39.6 Invoking the event dispatcher 363

then Tk_DoOneEvent suspends the process until an event arrives, processes that event,
and then returns 1.
For example, Tk_Mai nLoop isimplemented using Tk_DoOneEvent :
voi d Tk_Mai nLoop(void) {
whi l e (tk_Numvai nW ndows > 0) {
Tk_DoOneEvent (0);
}

}

Thevariablet k_Numvai nW ndows is maintained by Tk to count the total number of
main windows (i.e. applications) managed by this process. Tk_Mai nLoop just calls
Tk_DoOneEvent over and over until all the main windows have been deleted.

Tk_DoOneEvent isaso used by commands such ast kwai t that want to process
events while waiting for something to happen. For example, the“t kwai t wi ndow”
command processes events until a given window has been deleted, then it returns. Hereis
the C code that implements this command:

i nt done;

Tk_Creat eEvent Handl er (t kwi n, StructureNotifyMask,
Wai t W ndowPr oc,
(dientData) &done);
done = 0;
while (!done) {
Tk_DoOneEvent (0) ;
}

Thevariablet kwi n identifies the window whose deletion is awaited. The code creates an
event handler that will be invoked when the window is deleted, then invokes
Tk_DoOneEvent over and over until thedone flag is set to indicate that t kwi n has
been deleted. The callback for the event handler is as follows:
voi d Wai t WndowProc(C ientData clientData, XEvent *eventPtr) {
int *donePtr = (int *) clientData;
if (eventPtr->type == DestroyNotify) {
*donePtr = 1;
}

}
Thecl i ent Dat a argument isa pointer to the flag variable. Wai t W ndowPr oc checks
to make surethe eventisaDest r oyNot i fy event (St ruct ur eNot i f yMask also
selects several other kinds of events, such as Conf i gur eNot i fy) and if soit setsthe
flag variable to one.

Thef | ags argument to Tk_DoOneEvent can be used to restrict the kinds of
eventsit will consider. If it containsany of the bits TK_X_ EVENTS, TK_FI LE_EVENTS,
TK_TI MER_EVENTS, or TK_| DLE_EVENTS, then only the eventsindicated by the
specified bits will be considered. Furthermore, if f | ags includes the bit TK_DONT _ -
WAI T, or if no X, file, or timer events are requested, then Tk_DoOneEvent won't sus-

DRAFT (7/10/93): Distribution Restricted

364 Events

pend the process; if no event is ready to be processed then it will return immediately with
a0 result to indicate that it had nothing to do. For example, the“updat e i dl et asks”
command is implemented with the following code, which usesthe TK | DLE_EVENTS
flag:
whil e (Tk_DoOneEvent (TK_| DLE_EVENTS) != 0) {
/* enpty | oop body */
}

DRAFT (7/10/93): Distribution Restricted

Chapter 40
Displaying Widgets

40.1

Tk provides relatively little support for actually drawing things on the screen. For the most
part you just use Xlib functions liké€Dr awlLi ne andXDr awSt r i ng. The only proce-

dures provided by Tk are those summarizedaipld 40.1, which create three-dimensional
effects by drawing light and dark shadows around objects (they will be discussed more in
Section 40.3). This chapter consists mostly of a discussion of techniques for delaying
redisplays and for using pixmaps to doubleféaufedisplays. These techniques reduce
redisplay overheads and help produce smooth vistggitefwith mimimum flashing.

Delayed redisplay

The idea of delayed redisplay was already introduced in Section 39.4. Rather than redraw-
ing the widget every time its state is modified, you shouldrus@oWhenl dl e to
schedule the widget'display procedure for execution latwhen the application has fin-
ished processing all available events. This allows any other pending changes to the widget
to be completed beforestredrawn.

Delayed redisplay requires you to keep track of what to redramsimple widgets
such as the square widget or buttons or labels or entries, | recommend the simple approach
of redrawing the entire widget whenever you redraw any part of it. This eliminates the
need to remember which parts to redraw and it will have fine performance for widgets like
the ones mentioned above.

For lager and more complex widgets like texts or canvases fitgsactical to redraw
the whole widget after each change. This can take a substantial amount of time and cause
annoying delays, particularly for operations like dragging where redisplays happen many

365

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

366 Displaying Widgets

voi d Tk_Fil | 3DRect angl e(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWdth, int relief)
Fillsthe area of dr awabl e givenby x, y, wi dt h, and hei ght with the
background color from bor der, then draws a 3-D border bor der W dt h
pixelswide around (but just inside) the rectangle. Rel i ef specifiesthe3-D
appearance of the border.
voi d Tk_Draw3DRect angl e(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWdth, int relief)
Sameas Tk_Fi | | 3DRect angl e except only draws the border.

voi d Tk_Fil | 3DPol ygon(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBor der border, XPoint *pointPtr, int nunPoints,
int borderWdth, int |eftRelief)
Fills the area of apolygon indr awabl e with the background color from
bor der . The polygon is specified by poi nt Pt r and nunPoi nt s and
need not be closed. Also draws a 3-D border around the polygon. Bor der -
W dt h specifies the width of the border, measured in pixelsto the left of the
polygon’'strajectory (if negative then the border is drawn on the right).
Left Rel i ef specifiesthe 3-D appearance of the border (e.g. TK_RELI E-
F_RAI SED means the left side of the trajectory appears higher than the
right).
voi d Tk_Fi |l | 3DPol ygon(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBor der border, XPoint *pointPtr, int nunPoints,
int borderWdth, int |eftRelief)
Sameas Tk_Fi | | 3DPol ygon, except only draws the border without fill-
ing the interior of the polygon.

Table 40.1. A summary of Tk’s procedures for drawing 3-D effects.

times per second. For these widgets you should keep information in the widget record
about which parts of the widget need to be redrawn. The display procedure can then use
thisinformation to redraw only the affected parts.

| recommend recording what to redraw in the simplest (coarsest) way that gives ade-
quate performance. Keeping redisplay information on avery fine grainislikely to add
complexity to your widgets and probably won’'t improve performance noticeably over a
coarser mechanism. For example, the Tk text widget does not record what to redraw on a
character-by-character basis; instead, it keepstrack of which lines on the screen need to be
redrawn. The minimum amount that is ever redrawn is one whole line. Most redisplays
only involve one or two lines, and today’s workstations are fast enough to redraw hun-
dreds of lines per second, so the widget can keep up with the user even if redraws are
occurring dozens of times a second (such as when the user is dragging one end of the
selection). Tk’s canvases optimize redisplay by keeping a rectangular bounding box that
includes all of the modified objects. If two small objects at opposite corners of the window
are modified simultaneously then the redisplay areawill include the entire window, but

DRAFT (7/10/93): Distribution Restricted

40.2 Double-buffering with pixmaps 367

40.2

this doesn’t happen very often. In more common cases, such as dragging a single small
object, the bounding box approach requires only a small fraction of the window’s areato
be redrawn.

Double-buffering with pixmaps

Note:

40.3

If you want to achieve smooth dragging and other visual effects then you should not draw
graphics directly onto the screen, because this tends to cause annoying flashes. The reason
for the flashesis that widgets usually redisplay themselves by first clearing an areato its
background color and then drawing the foreground objects. While you’ re redrawing the
widget the monitor is continuously refreshing itself from display memory. Sometimes the
widget will be refreshed on the screen after it has been cleared but before the objects have
been redrawn. For this one screen refresh the widget will appear to be empty; by the time
of the next refresh you'll have redrawn all the objects so they’ll appear again. Theresult is
that the objectsin the widget will appear to flash off, then on. This flashing is particularly
noticeable during dynamic actions such as dragging or animation where redisplays happen
frequently.

To avoid flashing it's best to use a technique called double-buffering, where you redis-
play in two phases using an off-screen pixmap. The display procedure for the square wid-
get, shown in Figure 40.1, uses this approach. It calls XCr eat ePi xnap to alocate a
pixmap the size of thewindow, thenitcallsTk_Fi | | 3DRect angl e twiceto redraw the
widget in the pixmap. Once the widget has been drawn in the pixmap, the contents are
copied to the screen by calling XCopy Ar ea. With this approach the screen makes a
smooth transition from the widget’s previous state to its new state. It's still possible for the
screen to refresh itself during the copy from pixmap to screen but each pixel will be drawn
in either its correct old value or its correct new value.

If you compile the square widget into wi sh you can use the dragging script from Section
36.4 to compare double-buffering with drawing directly on the screen. To make a version
of the square widget that draws directly on the screen, just delete the calls to

XCr eat ePi xmap, XCopyAr ea, and XFr eePi xmap in Di spl aySquar e and
replace the pmargumentsto Tk_Fi | | 3DRect angl e with TkW ndow d(t kwi n) .

Or, you can use the version of the square widget that comes with the Tk distribution; it has
a- dbl option that you can use to turn double-buffering on and off dynamically.

Drawing procedures

Tk provides only four procedures for actually drawing graphics on the screen, which are
summarized in Table 40.1. These procedures make it easy to produce the three-dimen-
sional effects required for Motif widgets, where light and dark shadows are drawn around
objects to make them look raised or sunken.

DRAFT (7/10/93): Distribution Restricted

368 Displaying Widgets

voi d DisplaySquare(ClientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_W ndow tkwi n = squarePtr->tkw n;
Pi xmap pm
squar ePt r - >updat ePendi ng = O;
if (!Tk_lIsvapped(tkw n)) {
return;
}

pm = XCreat ePi xmap(Tk_Di spl ay(tkwi n), Tk_W ndow d(t kwi n),
Tk_Wdth(tkw n), Tk_Hei ght (tkw n), Tk_Depth(tkw n));
TKk_Fi || 3DRect angl e(Tk_Di spl ay(tkwi n), pm squarePtr->bgBorder
0, 0, Tk_Wdth(tkw n), Tk_Hei ght(tkw n),

squar ePtr->borderWdth, squarePtr->relief);

Tk_Fi | | 3DRect angl e(Tk_Di spl ay(tkwi n), pm squarePtr->fgBorder,
squarePtr->x, squarePtr->y, squarePtr->size, squarePtr-

>si ze,

squar ePtr->border Wdth, squarePtr->relief);

XCopyAr ea(Tk_Di spl ay(tkwi n), pm Tk_W ndow d(t kwi n),
squarePtr->copyGC, 0, 0, Tk_Wdth(tkw n), Tk_Hei ght(tkw n),
0, 0);

XFreePi xmap(Tk_Di spl ay(tkwi n), pm;

Figure 40.1. Thedisplay procedure for square widgets. It first clears

squar ePt r - >updat ePendi ng to indicate that there is no longer an idle callback for

Di spl aySquar e scheduled, then it makes sure that the window is mapped (if not then there’'s no
need to redisplay). It then redraws the widget in an off-screen pixmap and copies the pixmap onto
the screen when done.

Before using any of the proceduresin Table 40.1 you must allocate a Tk _3DBor der
object. A Tk_3DBor der recordsthree colors (a base color for “flat” background sur-
faces and lighter and darker colors for shadows) plus X graphics contexts for displaying
objects using those colors. Chapter 38 described how to allocate Tk_3DBor der s, for
example by using a configuration table entry of type TK_CONFI G_BORDER or by calling
Tk_Get 3DBor der.

Once you've created aTk_3DBor der you cancal Tk_Fi | | 3DRect angl e to
draw rectangular shapes with any of the standard reliefs:

voi d Tk_Fi |l 3DRect angl e(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBorder border, int x, int y,int width, int
hei ght ,
int borderWdth, int relief);
Thedi spl ay and dr awabl e arguments specify the pixmap or window where the rect-
angle will be drawn. Di spl ay isusualy specified asTk_Di spl ay(t kwi n) where
t kwi n isthe window being redrawn. Dr awabl e is usually the off-screen pixmap being
used for display, but it can also be Tk_W ndowi d(t kwi n) . Bor der specifiesthe col-

DRAFT (7/10/93): Distribution Restricted

40.3 Drawing procedures

369

bor der Wdt h
(120, 80) v
[]

*

70

A
\

100

Tk_Fi | | 3DRect angl e(di spl ay,
dr awabl e,
border, 120, 80, 100, 70,
bor der W dt h,
TK_RELI EF_RAI SED) ;

(150, 70)

\

(100, 150) (200, 150)
borderwWdth

static XPoint points[] =
{{200, 150},

{150, 70}, {100, 150}};
Tk_Fi | | 3DPol ygon(di spl ay,
dr awabl e,

@ (b)

Figure 40.2. Figure (a) showsacall to Tk_Fi | | 3DRect angl e and the graphic that is
produced; the border is drawn entirely inside the rectangular area. Figure (b) shows acall to
Tk_Fi | | 3DPol ygon and the resulting graphic. Therelief TK_RELI EF_RAI SED specifies that
the left side of the path should appear higher than the right, and that the border should be drawn
entirely on the left side of the path if bor der W dt h is positive.

orsto be used for drawing the rectangle. X, y, wi dt h, hei ght , and bor der W dt h
specify the geometry of the rectangle and its border, al in pixel units (see Figure 40.2).
Lastly, rel i ef specifiesthe desired 3D effect, such as TK_RELI EF_RAI SED or
TK_RELI EF_RI DGE. Tk_Fi | | 3DRect angl e firstfillstheentire areaof therectangle
with the “flat” color from bor der then it drawslight and dark shadows bor der W dt h
pixels wide around the edge of the rectangle to produce the effect specified by r el i ef .
Tk_Fi | | 3DPol ygonissimilarto Tk_Fi | | 3DRect angl e except that it drawsa
polygon instead of arectangle:
voi d Tk_Fi || 3DPol ygon(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBor der border, XPoint *pointPtr, int nunPoints,
int borderWdth, int leftRelief);
Di spl ay, dr awabl e, and bor der all have the same meaning asfor Tk_Fi | | 3-
DRect angl e. Poi nt Pt r and nunPoi nt s define the polygon’s shape (see your Xlib
documentation for information about XPoi nt structures) and bor der W dt h givesthe
width of the border, al in pixel units. Lef t Rel i ef definestherelief of the left side of
the polygon’strajectory relative to itsright side. For example, if | ef t Rel i ef isspeci-
fied as TK_RELI EF_RAI SED then the left side of the trajectory will appear higher than

DRAFT (7/10/93): Distribution Restricted

370

Displaying Widgets

theright side. If | ef t Rel i ef isTK_RELI EF_RI DGE or TK_REL| EF_GROOVE then
the border will be centered on the polygon’s trgjectory; otherwise it will be drawn on the
left side of the polygon’s trgjectory if bor der W dt h is positive and on the right side if
bor der W dt h is negative. See Figure 40.2 for an example.

The procedures Tk_Dr aw3DRect angl e and Tk_Dr aw3DPol ygon aresimilar to
Tk _Fi || 3DRect angl e and Tk_Fi | | 3DPol ygon except that they only draw the
border without filling the interior of the rectangle or polygon.

DRAFT (7/10/93): Distribution Restricted

Chapter 41
Destroying Widgets

41.1

This chapter describes how widgets should clean themselves up when they are destroyed.
For the most part widget destruction is fairly straightforwardjitst a matter of freeing

all of the resources associated with the widget. Howdéwvere is one complicating factor

which is that a widget might be in use at the time it is destroyed. This leads to a two-phase
approach to destruction where some of the cleanup may have to be delayed until the wid-
getis no longer in use. Tprocedures for window destruction, most of which have to do
with delayed cleanup, are summarized abl€ 41.1.

Basics

Widgets can be destroyed in thredeafiént ways. First, théest r oy Tcl command can
be invoked; it destroys one or more widgets and all of their descendants in the window
hierarchy Second, C code in the application can invbkeDest r oyW ndow; which
has the samefett as thelest r oy command:

voi d Tk_DestroyW ndow Tk_W ndow t kwi n);
Tk_Dest r oyW ndowis not invoked very often but it is used, for example, to destroy a
new widget immediately if an error is encountered while configuring it (see Figure 37.1 on
page 373). The last way for a widget to be destroyed is for someone to delete its X window
directly. This does not occur very often, and is not generally a good idea, but in some cases
it may make sense for a top-level window to be deleted externally (by the window man-
ager for example).

371

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

372

Destroying Widgets

41.2

voi d Tk_Dest r oyW ndow(TkK_W ndow t kwi n)
Destroyst kwi n and all of its descendants in the widget hierarchy.

void Tk_Preserve(CdientData clientData)
Makes surethat cl i ent Dat a will not be freed until amatching call to
Tk_Rel ease has been made.

voi d Tk_Rel ease(C i entData clientData)
Cancelsaprevious Tk_Pr eser ve cal forcl i ent Dat a. May cause
cl i ent Dat a to be freed.

voi d Tk_Eventual |l yFree(ClientData clientData Tk_FreeProc
*freeProc)
Invokesf r eeProc tofreeupcl i ent Dat a unlessTk_Pr eser ve has
been called for it; in this casef r eePr oc won't be invoked until each
Tk_Pr eser ve cal has been cancelled with acall to Tk_Rel ease.

Table 41.1. A summary of the Tk library procedures for destroying widgets and delaying object
cleanup.

A widget should handle all of these forms of window destruction in the same way
using ahandler for Dest r oyNot i fy events. Tk makes surethat aDest r oyNot i fy
event is generated for each window that is destroyed and doesn’t free up its TkK_W ndow
structure until after the handlers for the event have been invoked. When awidget receives
aDest royNoti fy eventit typicaly does four thingsto clean itself up:

1. It deletes the widget command for the widget by calling Tcl _Del et eComand.

2. It cancels any idle callbacks and timer handlers for the widget, such asthe idle callback
to redisplay the widget.

3. It frees any resources allocated for the widget. Most of this can be done by calling
Tk_FreeOpt i ons, but widgets usually have a few resources such as graphics con-
texts that are not directly associated with configuration options.

4. 1t frees the widget record.

For square widgetsthe first two of these actions are carried out in the event procedure, and
the third and fourth actions are carried out in a separate procedure called

Dest r oySquar e. Dest r oySquar e isthe destroy procedure for square widgets; it is
invoked indirectly from the event procedure using the mechanism discussed in Section
41.2 below. Its code is shown in Figure 41.1.

Delayed cleanup

The most delicate aspect of widget destruction is that the widget could bein use at the
timeit is destroyed; special precautions must be taken to delay most of the widget cleanup

DRAFT (7/10/93): Distribution Restricted

41.2 Delayed cleanup 373

voi d DestroySquare(CientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_FreeOpti ons(confi gSpecs, (char *) squarePtr,
squar ePtr->di splay, 0);
if (squarePtr->gc != None) {
Tk_FreeGC(squar ePtr->di spl ay, squarePtr->gc);

free((char *) squarePtr);

Figure 41.1. The destroy procedure for square widgets.

until the widget isno longer in use. For example, suppose that adialog box . dl g contains
abutton that is created with the following command:

button .dlg.quit -text Qit -comuand "destroy .dlg"
The purpose of this button isto destroy the dialog box. Now suppose that the user clicks
on the button with the mouse. The binding for <But t onRel ease- 1> invokes the but-
ton’si nvoke widget command:

.dlg.quit invoke
Thei nvoke widget command evaluates the button’s - comrand option as a Tcl script,
which destroys the dialog and all its descendants, including the button itself. When the
button is destroyed aDest r oyNot i f y event is generated, which causes the button’s
event procedure to be invoked to clean up the destroyed widget. Unfortunately it is not
safe for the event procedure to free the button’s widget record because thei nvoke wid-
get command is still pending on the call stack: when the event procedure returns, control
will eventually return back to the widget command procedure, which may need to refer-
ence the widget record. If the event procedure frees the widget record then the widget
command procedure will make wild references into memory. Thusin this situationiitis
important to wait until the widget command procedure completes before freeing the wid-
get record.

However, a button widget might also be deleted at atime when thereisnoi nvoke
widget command pending (e.g. the user might click on some other button, which destroys
the entire application). In this case the cleanup must be done by the event procedure since
there won't be any other opportunity for the widget to clean itself up. In other cases there
could be several nested procedures each of which is using the widget record, so it won't be
safe to clean up the widget record until the last of these procedures finishes.

In order to handle all of these cases cleanly Tk provides a mechanism for keeping
track of whether an object isin use and delaying its cleanup until it is no longer being
used. TK_Pr eser ve isinvoked to indicate that an object isin use and should not be
freed:

void Tk_Preserve(CientData clientData);

DRAFT (7/10/93): Distribution Restricted

374

Destroying Widgets

Thecl i ent Dat a argument is atoken for an object that might potentially be freed; typi-
cally itisthe address of awidget record. For each call to Tk_Pr eser ve there must even-
tualy beacall to Tk_Rel ease:

voi d Tk_Rel ease(ClientData clientData);

Thecl i ent Dat a argument should be the same as the corresponding argument to
Tk _Preserve. Eachcal to Tk_Rel ease cancelsacall to Tk_Pr eser ve for the
object; once al callsto Tk_Pr eser ve have been cancelled it is safe to free the object.

When Tk_Pr eser ve and Tk_Rel ease are being used to manage an object you
should call Tk_Event ual | yFr ee to free the object:

void Tk_Eventual | yFree(Cd ientData clientDat a,
Tk_FreeProc *freeProc);

Cl i ent Dat a must bethe sameasthecl i ent Dat a argument used in callsto
Tk_Preserve and Tk_Rel ease, andf r eePr oc isaprocedurethat actually freesthe
object. Fr eePr oc must match the following prototype:

typedef void Tk_FreeProc(CientData clientData);

Itscl i ent Dat a argument will be the same asthecl i ent Dat a argument to
Tk_Event ual | yFr ee. If the object hasn’t been protected with callsto Tk_Pr e-
serve then Tk_Event ual | yFr ee will invokef r eePr oc immediately. If Tk_Pr e-
ser ve hasbeen called for the object then f r eePr oc won't be invoked immediately;
instead it will be invoked later when Tk_Rel ease iscalled. If Tk_Pr eser ve hasbeen
called multiple timesthen f r eePr oc won't be invoked until each of the callsto

Tk _Pr eser ve hasbeen cancelled by a separate call to Tk_Rel ease.

| recommend that you use these proceduresin the same way asin the square widget.
Placeacall to Tk_Pr eser ve at the beginning of the widget command procedure and a
call to Tk_Rel ease at the end of the widget command procedure, and be sure that you
don't accidentally return from the widget command procedure without calling Tk_Re-
| ease, since thiswould prevent the widget from ever being freed. Then divide the wid-
get cleanup code into two parts. Put the code to delete the widget command, idle
callbacks, and timer handlers directly into the event procedure; this code can be executed
immediately without danger, and it prevents any new invocations of widget code. Put all
the code to cleanup the widget record into a separate delete procedure like
Dest roySquar e, and cal Tk_Event ual | yFr ee from the event procedure with the
delete procedure asitsf r eePr oc argument.

This approach is a bit conservative but it's smple and safe. For example, most wid-
gets have only one or two widget commands that could cause the widget to be destroyed,
such asthei nvoke widget command for buttons. You could move the callsto Tk_Pr e-
serve and Tk_Rel ease so that they only occur around code that might destroy the
widget, suchasaTcl _Ad obal Eval call. Thiswill saveabit of overhead by eliminating
callsto Tk_Preserve and Tk_Rel ease where they’ re not needed. However,
Tk_Preserve and Tk_Rel ease arefast enough that this optimization won't save
much time and it means you' |l constantly have to be on the lookout to add more callsto

DRAFT (7/10/93): Distribution Restricted

41.2 Delayed cleanup 375

Note:

Tk_Preserve and Tk_Rel ease if you modify the widget command procedure. If you
place the calls the beginning and end of the procedure you can make any modifications
you wish to the procedure without having to worry about issues of widget cleanup. In fact,
the square widget doesn’'t need callsto Tk_Pr eser ve and Tk_Rel ease at al, but |
put them in anyway so that | won't have to remember to add them later if | modify the
widget command procedure.

For most widgets the only place you'll need callsto Tk_Pr eser ve and Tk_Re-
| ease isinthe widget command procedure. However, if you invoke procedures like
Tcl _Eval anywhere else in the widget's code then you' Il need additional Tk_Pr e-
serve and Tk_Rel ease callstheretoo. For example, widgets like canvases and texts
implement their own event binding mechanismsin C code; these widgets must invoke
Tk_Pr eserve and Tk_Rel ease around the callsto event handlers.

The problem of freeing objects while they’ re in use occurs in many contextsin Tk
applications. For example, it's possible for the - conmand option for a button to change
the button’s - command option. This could cause the memory for the old value of the
option to be freed whileit's still being evaluated by the Tcl interpreter. To eliminate this
problem the button widget eval uates a copy of the script rather than the original. In general
whenever you make a call whose behavior isn’t completely predictable, such asacall to
Tcl _Eval anditscousins, you should think about all the objects that arein use at the
time of the call and take steps to protect them. In some simple cases making local copies
may be the simplest solution, as with the - command option; in more complex cases|'d
suggest using Tk_Pr eser ve and Tk_Rel ease; they can be used for objects of any
sort, not just widget records.

Tk_Preserve and Tk_Rel ease implement a form of short-term reference counts.
They are implemented under the assumption that objects are only in use for short periods
of time such as the duration of a particular procedure call, so that there are only a few
protected objects at any given time. You should not use them for long-term reference

counts where there might be hundreds or thousands of objectsthat are protected at a given
time, since they will be very dlow in these cases.

DRAFT (7/10/93): Distribution Restricted

376 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

Chapter 42
Managing the Selection

42.1

This chapter describes how to manipulate the X selection from C code. The low-level pro-
tocols for claiming the selection and transmitting it between applications are defined by
X’'s InterClient Communications Convention Manual (ICCCM) and are very compli-
cated. Fortunately Tk takes care of all the low-level details for you and provides three sim-
pler operations that you can perform on the selection:

* Create aelection handler, which is a callback procedure that can supply the selection
when it is owned in a particular window and retrieved with a particulgettar

¢ Claim ownership of the selection for a particular window
* Retrieve the selection from its current owner in a particulgetdorm.

Each of these three operations can be performed either wsisgripts or by writing C

code. Chapter XXX described how to manipulate the selection wiitbcfipts and much

of that information applies here as well, such as the usegets$an specify diérent ways

to retrieve the selectioncilscripts usually just retrieve the selection; claiming ownership
and supplying the selection are rarely done franIh contrast, is common to create
selection handlers and claim ownership of the selection from C code but rare to retrieve
the selection. Seeable 42.1 for a summary of the Tk library procedures related to the
selection.

Selection handlers

Each widget that supports the selection, such as an entry or text, must provide one or more
selection handlers to supply the selection on demand when the widget owns it. Each han-

377

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

378

Managing the Selection

Tk_Cr eat eSel Handl er (Tk_W ndow t kwi n, Atomtarget,
Tk_Sel ectionProc *proc, dientData clientData, Atom fornat)

Arranges for pr oc to be invoked whenever the selection is owned by
t kwi nandisretrievedintheformgivenbyt ar get . For mat specifiesthe
form in which Tk should transmit the selection to the requestor, and is usu-
ally XA_STRI NG

Tk_Del et eSel Handl er (Tk_W ndow t kwi n, Atomtarget)
Removesthe handler for t kwi n andt ar get , if one exists.

Tk_OanSel ecti on(Tk_W ndow t kwi n, Tk_Lost Sel Proc *proc,
ClientData clientData)
Claims ownership of the selection for t kwi n and notifies the previous
owner, if any, that it has lost the selection. Pr oc will be invoked later when
t kwi n loses the selection.
Tk_Cl ear Sel ecti on(Tk_W ndow t kwi n)
Cancels any existing selection for the display containingt kwi n.

int Tk_GetSel ection(Tcl _Interp *interp, Tk_Wndow tkw n,
Atomtarget, Tk_GetSel Proc *proc, ClientData clientData)
Retrieves the selection for t kwi n’sdisplay in the format specified by t ar -
get and passesit to pr oc in one or more pieces. Returns TCL_OK or
TCL_ERRORand leavesan error messageini nt er p- >r esul t if anerror
occurs.

Table 42.1. A summary of Tk’s procedures for managing the selection.

dler returns the selection in a particular target form. The procedure Tk_Cr eat e-
Sel Handl er createsanew selection handler:
voi d Tk_Creat eSel Handl er (Tk_W ndow t kwi n, Atom target,
Tk_Sel ectionProc *proc, dientData clientData,
Atom format);
Tkwi n isthe window from which the selection will be provided; the handler will only be
asked to supply the selection when the selection is owned by t kwi n. Tar get specifies
the target form in which the handler can supply the selection; the handler will only be
invoked when the selection isretrieved with that target. Pr oc isthe address of the handler
callback, and cl i ent Dat a isaone-word valueto passto pr oc. For mat tells Tk how
to transmit the selection to the requestor and isusually XA STRI NG (see the reference
documentation for other possibilities).
The callback procedure for a selection handler must match the following prototype:
typedef int Tk_Sel ectionProc(CientData clientData,
int offset, char *buffer, int nmaxBytes);
Thecl i ent Dat a argument will be the same asthecl i ent Dat a argument passed to
Tk _Cr eat eSel Handl er ; itisusually the address of awidget record. Pr oc should
place a null-terminated string at buf f er containing up to maxByt es of the selection

DRAFT (7/10/93): Distribution Restricted

42.1 Selection handlers 379

starting at byte of f set within the selection. The procedure should return a count of the
number of non-null bytes copied, which must be maxByt es unless there are fewer than
maxByt es left in the selection. If the widget no longer has a selection (because, for
example, the user deleted the selected range of characters) the selection handler should
return -1.

Usually the entire selection will be retrieved in a single request: offset will be 0 and
maxByt es will be large enough to accommodate the entire selection. However, very
large selectionswill beretrieved in transfers of afew thousand bytes each. Tk will invoke
the callback several times using successively higher values of of f set to retrieve succes-
sive portions of the selection. If the callback returns avalue lessthan maxByt es it means
that the entire remainder of the selection has been returned. If its return value is max-

Byt es it meansthat there may be additional information in the selection so Tk will call it
again to retrieve the next portion. You can assume that maxByt es will always be at least
afew thousand.

For example, Tk’s entry widgets have awidget record of type Ent r y with three
fields that are used to manage the selection:

st ri ng pointsto a null-terminated string containing the text in the entry;

sel ect Fi rst istheindex inst ri ng of thefirst selected byte (or -1 if nothing is

selected);

sel ect Last istheindex of the last selected byte.
An entry will supply the selection in only onetarget form (STRI NG) so it only hasasingle
selection handler. The create procedure for entries contains a statement like the following
to create the selection handler, whereent r yPt r isapointer to the widget record for the
new widget:

Tk_Creat eSel Handl er (entryPtr->tkwi n, XA STRI NG

EntryFet chSel ection, (ClientData) entryPtr,
XA_STRI NG ;

The callback for the selection handler is defined as follows:

int EntryFetchSelection(CientData clientData, int offset,
char *buffer, int maxBytes) {
Entry *entryPtr = (Entry *) clientData,;

int count;

if (entryPtr->selectFirst < 0) {
return -1;

}

count = entryPtr->selectlLast + 1 - entryPtr->sel ectFirst
- offset;

if (count > maxBytes) {
count = maxBytes;

}

if (count <= 0) {
count = 0O;

} else {

DRAFT (7/10/93): Distribution Restricted

380

Managing the Selection

42.2

strncpy(buffer, entryPtr->string
+ entryPtr->selectFirst + offset, count);

buffer[count] = O;
return count;

}

If awidget wishesto supply the selection in several different target formsit should
create a selection handler for each target. When the selection is retrieved, Tk will invoke
the handler for the target specified by the retriever.

Tk automatically provides handlers for the following targets:

APPLI CATI ON: returns the name of the application, which can be used to send com-
mands to the application containing the selection.

MULTI PLE: used to retrieve the selection in multiple target forms simultaneously.
Refer to ICCCM documenation for details.

TARCETS: returns alist of al the targets supported by the current selection owner
(including al the targets supported by Tk).

Tl MESTAMP: returns the time at which the selection was claimed by its current owner.
W NDOW_NANME: returns the path name of the window that owns the selection.
A widget can override any of these default handlers by creating a handler of its own.

Claiming the selection

The previous section showed how awidget can supply the selection to aretriever. How-
ever, before awidget will be asked to supply the selection it must first claim ownership of
the selection. This usually happens during widget commands that select something in the
widget, such asthesel ect widget command for entries and listboxes. To claim owner-
ship of the selection awidget should call Tk_OamnSel ect i on:

voi d Tk_OmSel ecti on(Tk_W ndow tkwi n, Tk_Lost Sel Proc *proc,

(AdientData) clientbData);

Tk_OmnSel ect i on will communicate with the X server to claim the selection for
t kwi n; as part of this process the previous owner of the selection will be notified so that
it can deselect itself. Tkwi n will remain the selection owner until either some other win-
dow claims ownership, t kwi n isdestroyed, or Tk_Cl ear Sel ect i on iscaled. When
t kwi n loses the selection Tk will invoke pr oc so that the widget can deselect itself and
display itself accordingly. Pr oc must match the following prototype:

typedef void Tk_Lost Sel Proc(CientData clientData);

Thecl i ent Dat a argument will be the same asthecl i ent Dat a argument to
Tk_OmnSel ecti on; itisusualy apointer to the widget's record.

DRAFT (7/10/93): Distribution Restricted

42.3 Retrieving the selection 381

Note:

42.3

Pr oc will only be called if some other window claims the selection or if
Tk_Cl ear Sel ect i on isinvoked. It will not be called if the owning widget is
destroyed.

If awidget claims the selection and then eliminates its selection (for example, the
selected text is deleted) the widget has three options. Firgt, it can continue to service the
selection and return O from its selection handlers; anyone who retrieves the selection will
receive an empty string. Second, the widget can continue to service the selection and
return -1 from its selection handlers; thiswill return an error (“no selection”) to anyone
who attempts to retrieve it. Third, the widget can call Tk_Cl ear Sel ecti on:

voi d Tk_d ear Sel ecti on(Tk_W ndow t kwi n) ;
Thet kwi n argument identifiesadisplay. Tk will claim the selection away from whatever
window owned it (either in this application or any other application ont kwi n’sdisplay)
and leave the selection unclaimed, so that all attemptsto retrieve it will result in errors.
This approach will have the same effect returning -1 from the selection handlers except
that the selection handlers will never be invoked at all.

Retrieving the selection

If an application wishes to retrieve the selection, for example to insert the selected text
into an entry, it usually does so with the“sel ecti on get ” Tcl command. This section
describes how to retrieve the selection at C level, but thisfacility israrely needed. The
only situation where | recommend writing C code to retrieve the selection isin cases
where the selection may be very large and a Tcl script may be noticeably slow. This might
occur in atext widget, for example, where a user might select awhole file in one window
and then copy it into another window. If the selection has hundreds of thousands of bytes
then a C implementation of the retrieval will be noticeably faster than a Tcl implementa-
tion.

To retrieve the selection from C code, invoke the procedure Tk__Cet Sel ect i on:

typedef int Tk_GetSel ection(Tcl_Interp *interp,
Tk_W ndow tkwi n, Atom target, Tk_GetSel Proc *proc,
ClientData clientData);

Thei nt er p argument isused for error reporting. Tkwi n specifies the window on whose
behalf the selection is being retrieved (it selects a display to use for retrieval), andt ar -
get specifiesthetarget form for theretrieval. Tk_Get Sel ect i on doesn’t return the
selection directly to its caller. Instead, it invokes pr oc and passesit the selection. This
makes retrieval abit more complicated but it allows Tk to buffer data more efficiently.
Large selections will be retrieved in several pieces, with one call to pr oc for each piece.
Tk _Get Sel ecti on normally returns TCL_ K to indicate that the selection was suc-
cessfully retrieved. If an error occursthen it returns TCL_ ERROR and |eaves an error mes-
sageini nterp->resul t.

Pr oc must match the following prototype:

DRAFT (7/10/93): Distribution Restricted

382

Managing the Selection

typedef int Tk _GetSel Proc(CientData clientData,
Tcl _Interp *interp, char *portion);

Thecl i ent Dat a andi nt er p argumentswill be the same as the corresponding argu-
mentsto Tk_Get Sel ecti on. Por ti on pointsto anull-terminated ASCII string con-
taining part or all of the selection. For small selections asingle call will be madeto pr oc
with the entire contents of the selection. For large selections two or more callswill be
made with successive portions of the selection. Pr oc should return TCL_ OKif it success-
fully processes the current portion of the selection. If it encounters an error then it should
return TCL_ERROR and |leave an error messageini nt er p- >r esul t ; the selection
retrieval will be aborted and this same error will be returned to Tk_Get Sel ecti on’s
caller.

For example, hereis code that retrieves the selection in target form STRI NGand
printsit on standard outpult:

i'f.(Tk_GetSeI ection(interp, tkwn,
Tk_InternAtom(tkwin, "STRING'), PrintSel,
(AdientData) stdout) != TCL_OK) ({

}

int PrintSel (ClientData clientData, Tcl _Interp *interp,
char *portion) {
FILE *f = (FILE *) clientData;
fputs(portion, f);
return TCL_OK;
}
Thecall to Tk_Get Sel ect i on could be made, for example, in the widget command
procedure for awidget, wheret kwi n isthe Tk_W ndowfor thewidget andi nt er p is
the interpreter in which the widget command is being processed. Thecl i ent Dat a argu-
ment is used to passaFl LE pointer to Pr i nt Sel . The output could be written to a dif-
ferent file by specifying adifferent cl i ent Dat a value.

DRAFT (7/10/93): Distribution Restricted

Chapter 43
Geometry M anagement

43.1

Tk provides two groups of library procedures for geometry management. The first group
of procedures implements a communication protocol between slave windows and their
geometry managers. Each widget calls Tk to provide geometry information such as the
widget’s preferred size and whether or not it has an internal grid. Tk then notifies the rele-
vant geometry manageso that the widget does not have to know which geometry man-
ager is responsible for it. Each geometry manager calls Tk to identify the slave windows it
will manage, so that Tk will know who to notify when geometry information changes for
the slaves. The second group of procedures is used by geometry managers to place slave
windows. It includes facilities for mapping and unmapping windows and for setting their
sizes and locations. All of these procedures are summarizedblie 43.1.

Requesting a size for a widget

Each widget is responsible for informing Tk of its geometry needs; Tk will make sure that
this information is forwarded to any relevant geometry managers. There are three pieces
of information that the slave can provide: requested size, internal pandegrid. The
first piece of information is provided by calliigg_ Geonet r yRequest :

voi d Tk_GeonetryRequest (Tk_W ndow tkwi n, int w dth, height);
This indicates that the ideal dimensionstfemi n arewi dt h andhei ght , both speci-
fied in pixels. Each widget should c@lk_CGeonet r yRequest once when it is created
and again whenever its preferred size changes (such as when its font changes); normally
the calls torTk_Geonet r yRequest are made by the widgsttonfigure procedure. In

383

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

384 Geometry Management

Tk_GeonetryRequest (Tk_W ndow tkwin, int width, int height)
Informs the geometry manager for tkwin that the preferred dimensions for
t kwi n arewi dt h and hei ght .

Tk_Set I nt er nal Border (Tk_W ndow t kwi n, int wi dth)
Informs any relevant geometry managersthat t kwi n has an internal border
wi dt h pixelswide and that slave windows should not be placed in this bor-
der region.

Tk_Set Gri d(Tk_W ndow tkwin, int reqWdth, int reqHei ght,

int widthlnc, int heightlnc)

Turns on gridded geometry management for t kwi n’s top-level window and
specifies the grid geometry. The dimensions requested by Tk_Geone-
tryRequest correspond to grid dimensions of r eqW dt h and
regHei ght ,andwi dt hl nc andhei ght | nc specify thedimensionsof a
single grid cell.

Tk_ManageGeonetry(Tk_W ndow t kwi n, Tk_GeonetryProc *proc,
ClientData clientData)
Arrangesfor pr oc to be invoked whenever Tk_CGeonet r yRequest is
invoked for t kwi n. Used by geometry managersto claim ownership of a
slave window.

i nt Tk_ReqHei ght (Tk_W ndow t kwi n)
Returns the height specified in the most recent call to Tk_Geonet r yRe-
quest fort kwi n (thisisamacro, not a procedure).

int Tk_ReqW dt h(Tk_W ndow t kwi n)
Returns the width specified in the most recent call to Tk_Geonet r yRe-
quest fort kwi n (thisisamacro, not a procedure).

int Tk_I nternal Border W dt h(Tk_W ndow t kwi n)
Returns the border width specified in the most recent call to Tk_I nt er -
nal Bor der W dt h fort kwi n (thisisamacro, not a procedure).

Tk_MapW ndow(Tk_W ndow t kwi n)
Arrangesfor t kwi n to be displayed on the screen whenever its ancestors are
mapped.

Tk_UnmapW ndow(Tk_W ndow t kwi n)
Preventst kwi n and its descendants from appearing on the screen.

Tk_MoveW ndow(Tk_W ndow tkwi n, int X, int
Positionst kwi n so that its upper-left pixel (including any borders) appears
at coordinatesx andy in its parent.
Tk_MoveResi zeW ndow Tk_W ndow tkwin, int x, int vy,
unsi gned int width, unsigned int height)
Changest kwi n’s position within its parent and also its size.
Tk_Resi zeW ndow TkK_W ndow t kwi n, unsi gned int width,
unsi gned int height)
Setstheinside dimensions of t kwi n (not including its external borde, if
any) towi dt h and hei ght .

Table 43.1. A summary of Tk’s procedures for geometry management.

DRAFT (7/10/93): Distribution Restricted

43.2 Internal borders 385

43.2

<«—wW dth—>

A
~«——wi dt h > T
hei ght hei ght
X border Internal border
€Y (b)

Figure 43.1. X bordersand internal borders. (a) shows an official X border, which is drawn by X
outside the area of the window. (b) shows an internal border drawn by a widget, where the area
occupied by the border is part of the window’s official area. In both figureswi dt h and hei ght
arethe official X dimensions of the window.

addition, geometry managers will sometimes call Tk_CGeonet r yRequest onawin-
dow’s behalf. For example, the packer resets the requested size for each master window
that it manages to match the needs of all of its slaves. This overrides the requested size set
by the widget and results in the shrink-wrap effects shown in Chapter XXX.

Internal borders

The X window system allows each window to have a border that appears just outside the
window. The official height and width of awindow are the inside dimensions, which
describe the usable area of the window and don’t include the border. Unfortunately,
though, X requires the entire border of awindow to be drawn with a single solid color or
stipple. To achieve the Moatif three-dimensional effects, the upper and left parts of the bor-
der have to be drawn differently than the lower and right parts. This means that X borders
can't be used for Motif widgets. Instead, Motif widgets draw their own borders, typically
using Tk procedures such as Tk_Dr aw3DRect angl e. The border for aMotif widget is
drawn around the perimeter of the widget but inside the official X area of the widget. This
kind of border is called an internal border. Figure 43.1 shows the difference between
external and internal borders.

If awidget hasan internal border then its usable area (the part that’sinside the border)
issmaller than its official X area. This complicates geometry management in two ways.
First, each widget has to include the border width (actually, twice the border width) in the
width and height that it requestsviaTk _Georret r yRequest . Second, if amaster win-

DRAFT (7/10/93): Distribution Restricted

386

Geometry Management

43.3

dow has an internal border then geometry managers should not place slave windows on
top of the border; the usable areafor arranging slaves should be the areainside the border.
In order for thisto happen the geometry managers must know about the presence of the
internal border. The procedure Tk_Set | nt er nal Bor der is provided for this purpose:
voi d Tk_Set I nt er nal Border (Tk_W ndow tkwi n, int w dth);
Thistells geometry managersthat t kwi n has an internal border that iswi dt h pixels
wide and that slave widgets should not overlap the internal border. Widgets with internal
borders normally call Tk_Set | nt er nal Bor der in their configure procedures at the
sametimethat they call Tk_Geonet r yRequest . If awidget usesanormal X border, or
if it has an internal border but doesn’t mind slaves being placed on top of the border, then
it need not call Tk_Set | nt er nal Bor der, orit cancal it withawi dt h of 0.

Grids

Gridded geometry management was introduced in Section XX X. The goal isto alow the
user to resize atop-level window interactively, but to constrain the resizing so that the
window’s dimensions aways lie on agrid. Typically this means that a particular subwin-
dow displaying fixed-width text always has awidth and height that are an integral number
of characters. The window manager implements constrained resizes, but the application
must supply it with the geometry of the grid. In order for this to happen, the widget that
determines the grid geometry must call Tk_Set Gri d:
void Tk_Set Gi d(Tk_W ndow tkwin, int gridWwdth, int
gri dHei ght,
int widthlnc, int heightlnc);

Thegri dW dt h andgri dHei ght arguments specify the number of grid units corre-
sponding to the pixel dimensions requested in the most recent call to Tk_Geornet r yRe-
quest . They allow the window manager to display the window’s current sizein grid
units rather than pixels. Thewi dt hl nc and hei ght | nc arguments specify the number
of pixelsinagrid unit. Tk passes all of thisinformation on to the window manager, and it
will then constrain interactive resizes so that t kwi n’stop-level window always has
dimensions that lie on a grid defined by its requested geometry, gri dW dt h, and gri d-
Hei ght .

Widgets that support gridding, such as texts, normally have a- set gri d option . If
- set gri disOthenthewidget doesn't call Tk_Set Gri d; thisisdoneif gridded resiz-
ing isn't wanted (e.g. the widget uses a variable-width font) or if some other widget in the
top-level window isto be the one that determines the grid. If - set gri d is 1 then the
widget calls Tk_Set G i d; typically this happens in the configure procedure at the same
timethat other geometry-related calls are made. If the widget's grid geometry changes (for
example, its font might change) then the widget callsTk_Set Gri d again.

DRAFT (7/10/93): Distribution Restricted

43.4 Geometry managers 387

43.4 Geometry managers

The remainder of this chapter describes the Tk library procedures that are used by geome-
try managers. It is intended to provide the basic information that you need to write a new
geometry manager. This section provides an overview of the structure of a geometry man-
ager and the following sections describe the Tk library procedures.

A typical geometry manager contains four main procedures. The first procedureis a
command procedure that implements the geometry manager’s Tcl command. Typically
each geometry manager provides a single command that is used by the application
designer to provide information to the geometry manager: pack for the packer, pl ace
for the placer, and so on. The command procedure collects information about each slave
and master window managed by the geometry manager and allocates a C structure for
each window to hold the information. For example, the packer uses a structure with two
parts. Thefirst part isused if the window is a master; it includes information such as alist
of slavesfor that master. The second part isused if the window isaslave; it includes infor-
mation such as the side against which the slave is to be packed and padding and filling
information. If awindow is both amaster and a slave then both parts are used. Each geom-
etry manager maintains a hash table (using Tcl’s hash table facilities) that maps from wid-
get namesto the C structure for geometry management.

The second procedure for ageometry manager isitslayout procedure. This procedure
contains al of the actual geometry calculations. It uses the information in the structures
created by the command procedure, plus geometry information provided by all of the
slaves, plus information about the current dimensions of the master. The layout procedure
typically has two phases. In thefirst phase it scans all of the slaves for a master, computes
theideal size for the master based on the needs of its laves, and calls Tk_Geone-
tryRequest to set the requested size of the master to theideal size. This phase only
exists for geometry managers like the packer that reflect geometry information upwards
through the widget hierarchy. For geometry managers like the placer, the first phaseis
skipped. In the second phase the layout procedure recomputes the geometriesfor all of the
slaves of the master.

The third procedure is a request callback that Tk invokes whenever a slave managed
by the geometry manager calls Tk_Geonet r yRequest . The callback arranges for the
layout procedure to be executed, as will be described below.

The final procedure is an event procedure that isinvoked when amaster window is
resized or when amaster or slave window is destroyed. If amaster window isresized then
the event procedure arranges for the layout procedure to be executed to recompute the
geometries of all of its slaves. If amaster or save window is destroyed then the event pro-
cedure deletes all the information maintained by the geometry manager for that window.
The command procedure creates event handlers that cause the event procedure to be
invoked.

The layout procedure must be invoked after each call to the command procedure, the
request callback, or the event procedure. Usually thisis done with an idle callback, so that

DRAFT (7/10/93): Distribution Restricted

388

Geometry Management

43.5

the layout procedure doesn’t actually execute until all pending work is completed. Using
anidle callback can save alot of timein situations such astheinitial creation of acomplex
panel. In this case the command procedure will be invoked once for each of many slave
windows, but there won't be enough information to compute the final layout until all of
the invocations have been made for all of the slaves. If the layout procedure were invoked
immediately it would just waste time computing layouts that will be discarded amost
immediately. With theidle callback, layout is deferred until complete information is avail-
ablefor al of the daves.

Claiming ownership

43.6

A geometry manager uses the procedure Tk_ManageCeonet r y to indicate that it
wishes to manage the geometry for a given slave window:
voi d Tk_ManageGeonetry(Tk_W ndow t kwi n, Tk_GeonetryProc *proc,
ClientData clientData);
From this point on, whenever Tk_Geonet r yRequest isinvoked for t kwi n, Tk will
invoke pr oc. There can be only one geometry manager for aslave at agiven time, so any
previous geometry manager is cancelled. A geometry manager can also disown aslave by
calling Tk_ManageCGeonet r y with anull value for pr oc. Pr oc must match the fol-
lowing prototype:
typedef void Tk_CeometryProc(CientData clientData,
Tk_W ndow t kwi n);
Thecl i ent Dat a andt kwi n arguments will be the same as those passed to Tk_ Man-
ageCeonet ry. Usualy Tk_ManageGeonet r y isinvoked by the command procedure
for ageometry manager, and usually cl i ent Dat a isa pointer to the structure holding
the geometry manager’sinformation about t kwi n.

Retrieving geometry information

Note:

When awidget calls Tk_Geonet r yRequest or Tk_Set | nt er nal Bor der Tk
saves the geometry information in its data structure for the widget. The geometry manag-
er’'s layout procedure can retrieve the requested dimensions of a slave with the macros
Tk _RegW dt h and Tk_ReqHei ght , and it can retrieve the width of amaster’sinternal
border with the macro Tk_| nt er nal Bor der W dt h. It can aso retrieve the master's
actual dimensionswith the Tk_W dt h and Tk_Hei ght macros, which were originally
described in Section 37.5.

Geometry managers need not worry about the gridding information provided with the

Tk_Set Gri d procedure. This information doesn't affect geometry managersat all. It is
simply passed on to the window manager for use in controlling interactive resizes.

DRAFT (7/10/93): Distribution Restricted

43.7 Mapping and setting geometry 389

43.7 Mapping and setting geometry

A geometry manager does two things to control the placement of aslave window. First, it
determines whether the slave window is mapped or unmapped, and second, it setsthe size
and location of the window.

X alows awindow to exist without appearing on the screen. Such awindow is called
unmapped: neither it nor any of its descendants will appear on the screen. In order for a
window to appear, it and al of its ancestors (up through the nearest top-level window)
must be mapped. All windows areinitially unmapped. When a geometry manager takes
responsibility for awindow it must map it by calling Tk_MapW ndow:

voi d Tk_MapW ndow(Tk_W ndow t kwi n);
Usually the geometry manager will call Tk_MapW ndowin its layout procedure once it
has decided where the window will appear. If a geometry manager decides not to manage
awindow anymore (e.g. inthe“pack f or get” command) then it must unmap the win-
dow to remove it from the screen:

voi d Tk_UnmapW ndow(Tk_W ndow t kwi n) ;
Some geometry managers may temporarily unmap windows during normal operation. For
example, the packer unmaps adlaveif thereisn’t enough spacein its master to display it; if
the master is enlarged |ater then the slave will be mapped again.

Tk provides three procedures that a geometry manager’s layout procedure can use to
position slave windows:

voi d Tk_MoveW ndow Tk_W ndow tkwin, int x, int y);
voi d Tk_Resi zeW ndow(Tk_W ndow t kwi n, unsi gned int w dth,
unsi gned int height);
voi d Tk_MoveResi zeW ndow(Tk_W ndow tkwin, int x, int vy,
unsi gned int width, unsigned int height);
Tk_MoveW ndowmoves awindow so that its upper left corner appears at the given loca-
tioninitsparent; Tk_Resi zeW ndow sets the dimensions of awindow without moving
it; and Tk_MbveResi ze both moves awindow and changes its dimensions.

The position specified to Tk_MoveW ndowor Tk_MoveResi zeW ndowisa
position in the slave's parent. However, most geometry managers allow the master for a
slave to be not only its parent but any descendant of the parent. Typically the layout proce-
dure will compute the slave’s location relative to its master; before calling
Tk_MoveW ndowor Tk_MbveResi zeW ndowit must trand ate these coordinates to
the coordinate system of the slave's parent. The following code shows how to transform
coordinates x and y from the master to the parent, assuming that sl ave isthe avewin-
dow and mast er isits master:

int x, vy;
Tk_W ndow sl ave, naster, parent, ancestor;

for (ancestor = master; ancestor != Tk_Parent (sl ave);
ancestor = Tk_Parent (ancestor)) {

DRAFT (7/10/93): Distribution Restricted

390 Geometry Management

X += Tk_X(ancestor) + Tk_Changes(ancestor)->border_wi dt h;
y += Tk_Y(ancestor) + Tk_Changes(ancestor)->border_wi dt h;

DRAFT (7/10/93): Distribution Restricted

