
1

DRAFT (4/16/93): Distribution Restricted

Chapter 27 Philosophy 257
27.1 C vs. Tcl: primitives 257

27.2 Object names 259

27.3 Commands: action-oriented vs. object-oriented260

27.4 Application prefixes 261

27.5 Representing information262

Chapter 28 Interpreters and Script Evaluation263
28.1 Interpreters 263

28.2 A simple Tcl application 263

28.3 Other evaluation procedures266

28.4 Deleting interpreters 266

Chapter 29 Creating New Tcl Commands269
29.1 Command procedures269

29.2 Registering commands271

29.3 The result protocol 272

29.4 Procedures for managing the result273

29.5 ClientData and deletion callbacks275

29.6 Deleting commands 278

Chapter 30 Parsing 279
30.1 Numbers and booleans279

30.2 Expression evaluation282

30.3 Manipulating lists 283

Chapter 31 Exceptions 285
31.1 Completion codes. 285

31.2 Augmenting the stack trace in errorInfo288

31.3 Setting errorCode 290

2

DRAFT (4/16/93): Distribution Restricted

Chapter 32 Accessing Tcl Variables 291
32.1 Naming variables 291

32.2 Setting variable values 293

32.3 Reading variables 295

32.4 Unsetting variables 296

32.5 Setting and unsetting variable traces 296

32.6 Trace callbacks 297

32.7 Whole-array traces 299

32.8 Multiple traces 299

32.9 Unset callbacks 299

32.10 Non-existent variables 300

32.11 Querying trace information 300

Chapter 33 Hash Tables 301
33.1 Keys and values 303

33.2 Creating and deleting hash tables 303

33.3 Creating entries 304

33.4 Finding existing entries 305

33.5 Searching 306

33.6 Deleting entries 307

33.7 Statistics 307

Chapter 34 String Utilities 309
34.1 Dynamic strings 309

34.2 Command completeness 312

34.3 String matching 313

Chapter 35 POSIX Utilities 315
35.1 Tilde expansion 315

35.2 Generating messages 317

3

DRAFT (4/16/93): Distribution Restricted

35.3 Creating subprocesses 318

35.4 Background processes 319

4

DRAFT (4/16/93): Distribution Restricted

Part III:

Writing Tcl Applications
 in C

256

DRAFT (4/16/93): Distribution Restricted

257

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 27
Philosophy

This part of the book describes how to write C applications based on Tcl. Since the Tcl
interpreter is implemented as a C library package, it can be linked into any C or C++ pro-
gram. The enclosing application invokes procedures in the Tcl library to create interpret-
ers, evaluate Tcl scripts, and extend the built-in command set with new application-
specific commands. Tcl also provides a number of utility procedures for use in implement-
ing new commands; these procedures can be used to access Tcl variables, parse argu-
ments, manipulate Tcl lists, evaluate Tcl expressions, and so on. This chapter discusses
several high-level issues to consider when designing a Tcl application, such as what new
Tcl commands to implement, how to name objects, and what form to use for command
results. The following chapters present the specific C interfaces provided by the Tcl
library.

Note: The interfaces described in Part III are those that will be available in Tcl 7.0, which had
not been released at the timex this draft was prepared. Thus there may some differences
between what you read here and what you can do with your current version of Tcl. There
are almost no differences in functionality; the differences mostly have to do with the
interfaces. Be sure to consult your manual entries when you actually write C code.

27.1 C vs. Tcl: primitives

In order to make a Tcl application as flexible and powerful as possible, you should orga-
nize its C code as a set of new Tcl commands that provide a clean set ofprimitive opera-
tions. You need not implement every imaginable feature in C, since new features can
always be implemented later as Tcl scripts. The purpose of the C code is to provide basic

FIGURE 27

TABLE 27

258 Philosophy

DRAFT (4/16/93): Distribution Restricted

operations that make it easy to implement a wide variety of useful scripts. If your C code
lumps several functions together into a single command then it won’t be possible to write
scripts that use the functions separately and your application won’t be very flexible or
extensible. Instead, each command should provide a single function, and you should com-
bine them together with Tcl scripts. You’ll probably find that many of your application’s
essential features are implemented as scripts.

Given a choice between implementing a particular piece of functionality as a Tcl
script or as C code, it’s generally better to implement it as a script. Scripts are usually eas-
ier to write, they can be modified dynamically, and you can debug them more quickly
because you don’t have to recompile after each bug fix. However, there are three reasons
why it is sometimes better to implement a new function in C. First, you may need to
access low-level machine facilities that aren’t accessible in Tcl scripts. For example, the
Tcl built-in commands don’t provide access to network sockets, so if you want to use the
network you’ll have to write C code to do it. Second, you may be concerned about effi-
ciency. For example, if you need to carry out intensive numerical calculations, or if you
need to operate on large arrays of data, you’ll be able to do it more efficiently in C than in
Tcl. The third reason for implementing in C is complexity. If you are manipulating com-
plex data structures, or if you’re writing a large amount of code, the task will probably be
more manageable in C than in Tcl. Tcl provides very little structure; this makes it easy to
connect different things together but hard to manage large complex scripts. C provides
more structure, which is cumbersome when you’re implementing small things but indis-
pensable when you’re implementing big complicated things.

As an example, consider a program to manipulate weather reports. Suppose that infor-
mation about current weather is available for a large number of measurement stations from
one or more network sites using a well-defined network protocol, and you want to write a
Tcl application to manipulate this data. Users of your application might wish to answer
questions like:

• What is the complete weather situation at station X?

• What is the current temperature at station X?

• Which station in the country has the highest current temperature?

• At which stations is it currently raining?
You’ll need to write some C code for this application in order to retrieve weather reports
over the network. What form should these new commands take?

One approach is to implement each of the above functions in C as a separate Tcl com-
mand. For example, you might provide a command that retrieves the weather report from
a station, formats it into prose, and prints it on standard output. Unfortunately this com-
mand can only be used for one purpose; you’d have to provide a second command for sit-
uations where you want to retrieve a report without printing it out (e.g. to find all the
station where it is raining).

Instead, I’d suggest providing just two commands in C: awthr_stations com-
mand that returns a list of all the stations for which weather reports are available, and a

27.2 Object names 259

DRAFT (4/16/93): Distribution Restricted

wthr_report command that returns a complete weather report for a particular station.
These commands don’t implement any of the above features directly, but they make it
easy to implement all of the features. For example, Tcl already has a puts command that
can be used to print information on standard output, so the first feature (printing a weather
report for a station) can be implemented with a script that calls wthr_report, formats
the report, and prints it with puts. The second feature (printing just the temperature) can
be implemented by extracing the temperature from the result of wthr_report and then
printing it alone. The third and fourth features (finding the hottest station and finding all
stations where it is raining) can be implemented with scripts that invoke wthr_report
for each station and extract and print relevant information. Many other features could also
be implemented, such as printing a sorted list of the ten stations with the highest tempera-
tures.

The preceding paragraph suggests that lower-level commands are better than higher-
level ones. However, if you make the commands too low level then Tcl scripts will
become unnecessarily complicated and you may lose opportunities for efficient implemen-
tation. For example, instead of providing a single command that retrieves a weather report,
you might provide separate Tcl commands for each step of the protocol that retrieves a
report: one command to connect to a server, one command to select a particular station,
one command to request a report for the selected station, and so on. Although this results
in more primitive commands, it is probably a mistake. The extra commands don’t provide
any additional functionality and they make it more tedious to write Tcl scripts. Further-
more, suppose that network communication delays are high, so that it takes a long time to
get a response from a weather server, but the server allows you to request reports for sev-
eral stations at once and get them all back in about the same time as a single report. In this
situation you might want an even higher level interface, perhaps a Tcl command that takes
any number of stations as arguments and retrieves reports for all of them at once. This
would allow the C code to amortize the communication delays across several report
retrievals and it might permit a much more efficient implementation of operations such as
finding the station with the highest temperature.

To summarize, you should pick commands that are primitive enough so that all of the
application’s key functions are available individually through Tcl commands. On the other
hand, you should pick commands that are high-level enough to hide unimportant details
and capitalize on opportunities for efficient implementation.

27.2 Object names

The easiest way to think about your C code is in terms of objects. The C code in a Tcl
application typically implements a few new kinds of objects, which are manipulated by
the application’s new Tcl commands. In the C code of your application you’ll probably
refer to the objects using pointers to the C structures that represent the objects, but you
can’t use pointers in Tcl scripts. Strings of some sort will have to be used in the Tcl scripts,

260 Philosophy

DRAFT (4/16/93): Distribution Restricted

and the C code that implements your commands will have to translate from those strings
to internal pointers. For example, the objects in the weather application are weather sta-
tions; thewthr_stations command returns a list of station names, and the
wthr_report command takes a station name as an argument.

A simple but dangerous way to name objects is to use their internal addresses. For
example, in the weather application you could name each station with a hexadecimal
string giving the internal address of the C structure for that station: the command that
returns a list of stations would return a list of hexadecimal strings, and the command to
retrieve a weather report would take one of these hexadecimal strings as argument. When
the C code receives one of these strings, it could produce a pointer by converting the string
to a binary number. I don’t recommend using this approach in practice because it is hard to
verify that a hexadecimal string refers to a valid object. If a user specifies a bad address it
might cause the C code to make wild memory accesses, which could cause the application
to crash. In addition, hexadecimal strings don’t convey any meaningful information to the
user.

Instead, I recommend using names that can be verified and that convey meaningful
information. One simple approach is to keep a hash table in your C code that maps from a
string name to the internal pointer for the object; a name is only valid if it appears in the
hash table. The Tcl library implements flexible hash tables to make it easy for you to use
this approach (see Chapter 33). If you use a hash table then you can use any strings what-
soever for names, so you might as well pick ones that convey information. For example,
Tk uses hierarchical path names like.menu.help for windows in order to indicate the
window’s position in the window hierarchy. Tcl uses names likefile3 orfile4 for
open files; these names don’t convey a lot of information, but they at least include the let-
ters “file” to suggest that they’re used for file access, and the number is the POSIX file
descriptor number for the open file. For the weather application I’d recommend using sta-
tion names such as the city where the station is located. Or, if the U.S. Weather Service has
well-defined names for its stations then I’d suggest using those names.

27.3 Commands: action-oriented vs. object-oriented

There are two approaches you can use when defining commands in your application,
which I callaction-oriented andobject-oriented. In the action-oriented approach there is
one command for each action that can be taken on an object, and the command takes an
object name as an argument. The weather application is action-oriented: thewthr_re-
port command corresponds to an action (retrieve weather report) and it takes a weather
station name as an argument. Tcl’s file commands are also action-oriented: there are sepa-
rate commands for opening files, reading, writing, closing, etc.

In the object-oriented approach there is one command for each object, and the name
of the command is the name of the object. When the command is invoked its first argu-
ment specifies the operation to perform on the object. Tk’s widgets work this way: if there

27.4 Application prefixes 261

DRAFT (4/16/93): Distribution Restricted

is a button widget.b then there is also a command named.b ; you can invoke
“ .b f lash ” to flash the widget or “.b invoke ” to invoke its action.

The action-oriented approach is best when there are a great many objects or the
objects are unpredictable or short-lived. For example, it wouldn’t make sense to imple-
ment string operations using an object-oriented approach because there would have to be
one command for each string, and in practice Tcl applications have large numbers of
strings that are created and deleted on a command-by-command basis. The weather appli-
cation uses the action-oriented approach because there are only a few actions and and
potentially a large number of stations. In addition, the application probably doesn’t need to
keep around state for each station all the time; it just uses the station name to look up
weather information when requested.

The object-oriented approach works well when the number of objects isn’t too great
(e.g. a few tens or hundreds) and the objects are well-defined and exist for at least moder-
ate amounts of time. Tk’s widgets fit this description. The object-oriented approach has
the advantage that it doesn’t pollute the command name space with lots of commands for
individual actions. For example in the action-oriented approach the command “delete”
might be defined for one kind of object, thereby preventing its use for any other kind of
object. In the object-oriented approach you only have to make sure that your object names
don’t conflict with existing commands or other object names. For example, Tk claims all
command names starting with “.” for its widget commands. The object-oriented approach
also makes it possible for different objects to implement the same action in different ways.
For example, if.t is a text widget and.l is a listbox widget in Tk, thecommands
“.t yview 0 ” and “.l yview 0 ” are implemented in very different ways even
though they produce the same logical effect (adjust the view to make the topmost line vis-
ible at the top of the window).

Note: Although Tk’s file commands are implemented using the action-oriented approach, in
retrospect I wish that I had used the object-oriented fashion, since open files fit the object-
oriented model nicely.

27.4 Application prefixes

If you use the action-oriented approach, I strongly recommend that you add a unique pre-
fix to each of your command names. For example, I used the prefix “wthr_ ” for the
weather commands. This guarantees that your commands won’t conflict with other com-
mands as long as your prefix is unique, and it makes it possible to merge different applica-
tions together without name conflicts. I also recommend using prefixes for Tcl procedures
that you define and for global variables, again so that multiple packages can be used
together.

262 Philosophy

DRAFT (4/16/93): Distribution Restricted

27.5 Representing information

The information passed into and out of your Tcl commands should be formatted for
easy processing by Tcl scripts, not necessarily for maximum human readability. For exam-
ple, the command that retrieves a weather report shouldn’t return English prose describing
the weather. Instead, it should return the information in a structured form that makes it
easy to extract the different components under the control of a Tcl script. You might return
the report as a list consisting of pairs of elements, where the first element of each pair is a
keyword and the second element is a value associated with that keyword, such as:

temp 53 hi 68 lo 37 precip .02 sky part

This indicates that the current temperature at the station is 53 degrees, the high and low for
the last 24 hours were 68 and 37 degrees, .02 inches of rain has fallen in the last 24 hours,
and the sky is partly cloudy. Or, the command might store the report in an associative
array where each keyword is used as the name of an array element and the corresponding
value is stored in that element. Either of these approaches would make it easy to extract
components of the report. You can always reformat the information to make it more read-
able just before displaying it to the user.

Although machine readability is more important than human readability, you need not
gratuitously sacrifice readability. For example, the above list could have been encoded as

18 53 7 68 9 37 5 .02 17 4

where 18 is a keyword for current temperature, 7 for 24-hour high, and so on. This is
unnecessarily confusing and will not make your scripts any more efficient, since Tcl han-
dles strings at least as efficiently as numbers.

263

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 28
Interpreters and Script Evaluation

This chapter describes how to create and delete interpreters and how to use them to evalu-
ate Tcl scripts. Table 28.1 summarizes the library procedures that are discussed in the
chapter.

28.1 Interpreters

The central data structure manipulated by the Tcl library is a C structure of typeTcl_In-
terp. I’ll refer to these structures (or pointers to them) asinterpreters. Almost all of the
Tcl library procedures take a pointer to aTcl_Interp structure as an argument. An
interpreter embodies the execution state of a Tcl script, including commands implemented
in C, Tcl procedures, variables, and an execution stack that reflects partially-evaluated
commands and Tcl procedures. Most Tcl applications use only a single interpreter but it is
possible for a single process to manage several independent interpreters.

28.2 A simple Tcl application

The program below illustrates how to create and use an interpreter. It is a simple but com-
plete Tcl application that evaluates a Tcl script stored in a file and prints the result or error
message, if any.

#include <stdio.h>
#include <tcl.h>

FIGURE 28

TABLE 28

264 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

main(int argc, char *argv[]) {
Tcl_Interp *interp;
int code;

if (argc != 2) {
fprintf(stderr, "Wrong # arguments: ");
fprintf("should be \"%s fileName\"\n",

argv[0]);
exit(1);

}

interp = Tcl_CreateInterp();
code = Tcl_EvalFile(interp, argv[1]);
if (*interp->result != 0) {

printf("%s\n", interp->result);
}
if (code != TCL_OK) {

Table 28.1. Tcl library procedures for creating and deleting interpreters and for evaluating Tcl

Tcl_Interp *Tcl_CreateInterp(void)
Create a new interpreter and return a token for it.

Tcl_DeleteInterp(Tcl_Interp *interp)
Delete an interpreter.

int Tcl_Eval(Tcl_Interp *interp, char *script)
Evaluate script in interp and return its completion code. The result or
error string will be in interp->result.

int Tcl_EvalFile(Tcl_Interp *interp, char *fileName)
Evaluate the contents of file fileName in interp and return its comple-
tion code. The result or error string will be in interp->result.

int Tcl_GlobalEval(Tcl_Interp *interp, char *script)
Evaluate script in interp at global level and return its completion code.
The result or error string will be in interp->result.

int Tcl_VarEval(Tcl_Interp *interp, char *string, char *string,
... (char *) NULL)

Concatenate all of the string arguments into a single string, evaluate the
resulting script in interp, and return its completion code. The result or
error string will be in interp->result.

int Tcl_RecordAndEval(Tcl_Interp *interp, char *script, int
flags)
Records script as an event in interp’s history list and evaluates it if
eval is non-zero (TCL_NO_EVAL means don’t evaluate the script). Returns
a completion code such as TCL_OK and leaves result or error message in
interp->result.

28.2 A simple Tcl application 265

DRAFT (4/16/93): Distribution Restricted

exit(1);
}
exit(0);

}

If Tcl has been installed properly at your site you can copy the C code into a file named
simple.c and compile it with the following shell command:

cc simple.c -ltcl -lm

Once you’ve compiled the program you can evaluate a script file test.tcl by typing
the following command to your shell:

a.out test.tcl

The code for simple.c starts out with #include statements for stdio.h and
tcl.h. You’ll need to include tcl.h in every file that uses Tcl structures or procedures,
since it defines structures like Tcl_Interp and declares the Tcl library procedures.

After checking to be sure that a file name was specified on the command line, the pro-
gram invokes Tcl_CreateInterp to create a new interpreter. The new interpreter will
contain all of the built-in commands described in Part I but no Tcl procedures or variables.
It will have an empty execution stack. Tcl_CreateInterp returns a pointer to the
Tcl_Interp structure for the interpreter, which is used as a token for the interpreter
when calling other Tcl procedures. Most of the fields of the Tcl_Interp structure are
hidden so that they cannot be accessed outside the Tcl library. The only accessible fields
are those that describe the result of the last script evaluation; they’ll be discussed later.

Next simple.c calls Tcl_EvalFile with the interpreter and the name of the
script file as arguments. Tcl_EvalFile reads the file and evaluates its contents as a Tcl
script, just as if you had invoked the Tcl source command with the file name as an argu-
ment. When Tcl_EvalFile returns the execution stack for the interpreter will once
again be empty.

Tcl_EvalFile returns two pieces of information: an integer completion code and
a string. The completion code is returned as the result of the procedure. It will be either
TCL_OK, which means that the script completed normally, or TCL_ERROR, which means
that an error of some sort occurred (e.g. the script file couldn’t be read or the script aborted
with an error). The second piece of information returned by Tcl_EvalFile is a string, a
pointer to which is returned in interp->result. If the completion code is TCL_OK
then interp->result points to the script’s result; if the completion code is TCL_ER-
ROR then interp->result points to a message describing the error.

Note: The result string belongs to Tcl. It may or may not be dynamically allocated. You can read
it and copy it, but you should not modify it and you should not save pointers to it. Tcl may
overwrite the string or reallocate its memory during the next call to Tcl_EvalFile or
any of the other procedures that evaluate scripts. Chapter 29 discusses the result string in
more detail.

266 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

If the result string is non-empty then simple.c prints it, regardless of whether it is
an error message or a normal result. Then the program exits. It follows the UNIX style of
exiting with a status of 1 if an error occurred and 0 if it completed successfully.

When the script file is evaluated only the built-in Tcl commands are available: no Tk
commands will be available in this application and no application-specific commands
have been defined.

28.3 Other evaluation procedures

Tcl provides three other procedures besides Tcl_EvalFile for evaluating scripts. Each
of these procedures takes an interpreter as its first argument and each returns a completion
code and string, just like Tcl_EvalFile. Tcl_Eval is similar to Tcl_EvalFile
except that its second argument is a Tcl script rather than a file name:

code = Tcl_Eval(interp, "set a 44");

Tcl_VarEval takes a variable number of string arguments terminated with a NULL
argument. It concatenates the strings and evaluates the result as a Tcl script. For example,
the statement below has the same effect as the one above:

code = Tcl_VarEval(interp, "set a ", "44",
(char *) NULL);

Tcl_GlobalEval is similar to Tcl_Eval except that it evaluates the script at global
variable context (as if the execution stack were empty) even when procedures are active. It
is used in special cases such as the uplevel command and Tk’s event bindings.

If you want a script to be recorded on the Tcl history list, call Tcl_RecordAndE-
val instead of Tcl_Eval:

char *script;
int code;
...
code = Tcl_RecordAndEval(interp, script, 0);

Tcl_RecordAndEval is identical to Tcl_Eval except that it records the script as a
new entry on the history list before invoking it. Tcl only records the scripts passed to
Tcl_RecordAndEval, so you can select which ones to record. Typically you’ll record
only commands that were typed interactively. The last argument to Tcl_RecordAndE-
val is normally 0; if you specify TCL_NO_EVAL instead, then Tcl will record the script
without actually evaluating it.

28.4 Deleting interpreters

The procedure Tcl_DeleteInterp may be called to destroy an interpreter and all its
associated state. It is invoked with an interpreter as argument:

28.4 Deleting interpreters 267

DRAFT (4/16/93): Distribution Restricted

Tcl_DeleteInterp(interp);

Once Tcl_DeleteInterp returns you should never use the interpreter again. In appli-
cations like simple.c, which use a single interpreter throughout their lifetime, there’s
no need to delete the interpreter.

268 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

269

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 29
Creating New Tcl Commands

Each Tcl command is represented by acommand procedure written in C. When the com-
mand is invoked during script evaluation, Tcl calls its command procedure to carry out the
command. This chapter provides basic information on how to write command procedures,
how to register command procedures in an interpreter , and how to manage the interpret-
er’s result string. Table 29.1 summarizes the Tcl library procedures that are discussed in
the chapter.

29.1 Command procedures

The interface to a command procedure is defined by theTcl_CmdProc procedure proto-
type:

typedef int Tcl_CmdProc(ClientData clientData,
Tcl_Interp *interp, int argc,
char *argv[]);

Each command procedure takes four arguments. The first,clientData, will be dis-
cussed in Section 29.5 below. The second,interp, is the interpreter in which the com-
mand was invoked. The third and fourth arguments have the same meaning as theargc
andargv arguments to a C main program:argc specifies the total number of words in
the Tcl command andargv is an array of pointers to the values of the words. Tcl pro-
cesses all the special characters such as$ and [] before invoking command procedures,
so the values inargc reflect any substitutions that were specified for the command. The
command name is included inargc andargv, andargv[argc] is NULL. A command

FIGURE 29

TABLE 29

270 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

procedure returns two values just like Tcl_Eval and Tcl_EvalFile. It returns an
integer completion code as its result (e.g. TCL_OK or TCL_ERROR) and it leaves a result
string or error message in interp->result.

Here is the command procedure for a new command called eq that compares its two
arguments for equality:

int EqCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

if (argc != 3) {
interp->result = "wrong # args";
return TCL_ERROR;

}
if (strcmp(argv[1], argv[2]) == 0) {

interp->result = "1";
} else {

interp->result = "0";
}

Table 29.1. Tcl library procedures for creating and deleting commands and for manipulating the

Tcl_CreateCommand(Tcl_Interp *interp, char *cmdName,
 Tcl_CmdProc *cmdProc, ClientData clientData,
 Tcl_CmdDeleteProc *deleteProc)

Defines a new command in interp with name cmdName. When the com-
mand is invoked cmdProc will be called; if the command is ever deleted
then deleteProc will be called.

int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)
If cmdName is a command or procedure in interp then deletes it and
returns 0. Otherwise returns -1.

Tcl_SetResult(Tcl_Interp *interp, char *string,Tcl_FreeProc
*freeProc)
Arrange for string (or a copy of it) to become the result for interp.
FreeProc identifies a procedure to call to eventually free the result, or it
may be TCL_STATIC, TCL_DYNAMIC, or TCL_VOLATILE.

Tcl_AppendResult(Tcl_Interp *interp, char *string,
 char *string, ... (char *) NULL)

Appends each of the string arguments to the result string in interp.
Tcl_AppendElement(Tcl_Interp *interp, char *string)

Formats string as a Tcl list element and appends it to the result string in
interp, with a preceding separator space if needed.

Tcl_ResetResult(Tcl_Interp *interp)
Resets interp’s result to the default empty state, freeing up any dynami-
cally-allocated memory associated with it.

29.2 Registering commands 271

DRAFT (4/16/93): Distribution Restricted

return TCL_OK;
}

EqCmd checks to see that was called with exactly two arguments (three words, including
the command name), and if not it stores an error message in interp->result and
returns TCL_ERROR. Otherwise it compares its two argument strings and stores a string in
interp->result to indicate whether or not they were equal; then it returns TCL_OK
to indicate that the command completed normally.

29.2 Registering commands

In order for a command procedure to be invoked by Tcl, you must register it by calling
Tcl_CreateCommand. For example, EqCmd could be registered with the following
statement:

Tcl_CreateCommand(interp, "eq", EqCmd,
(ClientData *) NULL,
(Tcl_CmdDeleteProc *) NULL);

The first argument to Tcl_CreateCommand identifies the interpreter in which the com-
mand will be used. The second argument specifies the name for the command and the third
argument specifies its command procedure. The fourth and fifth arguments are discussed
in Section 29.5 below; they can be specified as NULL for simple commands like this one.
Tcl_CreateCommand will create a new command for interp named eq; if there
already existed a command by that name then it is deleted. Whenever eq is invoked in
interp Tcl will call EqCmd to carry out its function.

After the above call to Tcl_CreateCommand, eq can be used in scripts just like
any other command:

eq abc def

0

eq 1 1

1

set w .dlg
set w2 .dlg.ok
eq $w.ok $w2

1

When processing scripts, Tcl carries out all of the command-line substitutions before call-
ing the command procedure, so when EqCmd is called for the last eq command above
both argv[1] and argv[2] are “.dlg.ok”.

Tcl_CreateCommand is usually called by applications during initialization to reg-
ister application-specific commands. However, new commands can also be created at any
time while an application is running. For example, the proc command creates a new

272 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

command for each Tcl procedure that is defined, and Tk creates a widget command for
each new widget. In Section 29.5 you’ll see an example where the command procedure for
one command creates a new command.

Commands created by Tcl_CreateCommand are indistinguishable from Tcl’s
built-in commands. Each built-in command has a command procedure with the same form
as EqCmd, and you can redefine a built-in command by calling Tcl_CreateCommand
with the name of the command and a new command procedure.

29.3 The result protocol

The EqCmd procedure returns a result by setting interp->result to point to one of
several static strings. However, the result string can also be managed in several other
ways. Tcl defines a protocol for setting and using the result, which allows for dynamically-
allocated results and provides a small static area to avoid memory-allocation overheads in
simple cases.

The full definition of the Tcl_Interp structure, as visible outside the Tcl library, is
as follows:

typedef struct Tcl_Interp {
char *result;
Tcl_FreeProc *freeProc;
int errorLine;

} Tcl_Interp;

The first field, result, points to the interpreter’s current result. The second field,
freeProc, is used when freeing dynamically-allocated results; it will be discussed
below. The third field, errorLine, is related to error handling and is described in Sec-
tion XXX.

When Tcl invokes a command procedure the result and freeProc fields always
have well-defined values. Interp->result points to a small character array that is
part of the interpreter structure and the array has been initialized to hold an empty string
(the first character of the array is zero). Interp->freeProc is always zero. This state
is referred to as the initialized state for the result. Not only is this the state of the result
when command procedures are invoked, but many Tcl library procedures also expect the
interpreter’s result to be in the initialized state when they are invoked. If a command pro-
cedure wishes to return an empty string as its result, it simply returns without modifying
interp->result or interp->freeProc.

There are three ways that a command procedure can specify a non-empty result. First,
it can modify interp->result to point to a static string as in EqCmd. A string can be
considered to be static as long as its value will not change before the next Tcl command
procedure is invoked. For example, Tk stores the name of each widget in a dynamically-
allocated record associated with the widget, and it returns widget names by setting
interp->result to the name string in the widget record. This string is dynamically

29.4 Procedures for managing the result 273

DRAFT (4/16/93): Distribution Restricted

allocated, but widgets are deleted by Tcl commands so the string is guaranteed not to be
recycled before the next Tcl command executes. If a string is stored in automatic storage
associated with a procedure it cannot be treated as static, since its value will change as
soon as some other procedure re-uses the stack space.

The second way to set a result is to use the pre-allocated space in the Tcl_Interp
structure. In its initialized state interp->result points to this space. If a command
procedure wishes to return a small result it can copy it to the location pointed to by
interp->result. For example, the procedure below implements a command
numwords that returns a decimal string giving a count of its arguments:

int NumwordsCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

sprintf(interp->result, "%d", argc);
return TCL_OK;

}

The size of the pre-allocated space is guaranteed to be at least 200 bytes; you can retrieve
the exact size with the symbol TCL_RESULT_SIZE defined by tcl.h. It’s generally
safe to use this area for printing a few numbers and/or short strings, but it is not safe to
copy strings of unbounded length to the pre-allocated space.

The third way to set a result is to allocate memory with a storage allocator such as
malloc, store the result string there, and set interp->result to the address of the
memory. In order to ensure that the memory is eventually freed, you must also set
interp->freeProc to the address of a procedure that Tcl can call to free the memory,
such as free. In this case the dynamically-allocated memory becomes the property of
Tcl. Once Tcl has finished using the result it will free it by invoking the procedure speci-
fied by interp->freeProc. This procedure must match the following procedure pro-
totype:

typedef void Tcl_FreeProc(char *blockPtr);

The procedure will be invoked with a single argument containing the address that you
stored in interp->result. In most cases you’ll use malloc for dynamic allocation
and thus set interp->freeProc to free, but the mechanism is general enough to
support other storage allocators too.

29.4 Procedures for managing the result

Tcl provides several library procedures for manipulating the result. These procedures
all obey the protocol described in the previous section, and you may find them more con-
venient than setting interp->result and interp->freeProc directly. The first
procedure is Tcl_SetResult, which simply implements the protocol described above.
For example, EqCmd could have replaced the statement

interp->result = "wrong # args";

274 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

with a call to Tcl_SetResult as follows:

Tcl_SetResult(interp, "wrong # args", TCL_STATIC);

The first argument to Tcl_SetResult is an interpreter. The second argument is a string
to use as result, and the third argument gives additional information about the string.
TCL_STATIC means that the string is static, so Tcl_SetResult just stores its address
into interp->result. A value of TCL_VOLATILE for the third argument means that
the string is about to change (e.g. it’s stored in the procedure’s stack frame) so a copy must
be made for the result. Tcl_SetResult will copy the string into the pre-allocated space
if it fits, otherwise it will allocate new memory to use for the result and copy the string
there (setting interp->freeProc appropriately). If the third argument is TCL_DY-
NAMIC it means that the string was allocated with malloc and is now the property of
Tcl: Tcl_SetResult will set interp->freeProc to free as described above.
Finally, the third argument may be the address of a procedure suitable for use in
interp->freeProc; in this case the string is dynamically-allocated and Tcl will even-
tually call the specified procedure to free it.

Tcl_AppendResult makes it easy to build up results in pieces. It takes any num-
ber of strings as arguments and appends them to the interpreter’s result in order. As the
result grows in length Tcl_AppendResult allocates new memory for it. Tcl_Ap-
pendResult may be called repeatedly to build up long results incrementally, and it does
this efficiently even if the result becomes very large (e.g. it allocates extra memory so that
it doesn’t have to copy the existing result into a larger area on each call). Here is an imple-
mentation of the concat command that uses Tcl_AppendResult:

int ConcatCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

int i;
if (argc == 1) {

return TCL_OK;
}
Tcl_AppendResult(interp, argv[1], (char *) NULL);
for (i = 2; i < argc; i++) {

Tcl_AppendResult(interp, " ", argv[i],
(char *) NULL);

}
return TCL_OK;

}

The NULL argument in each call to Tcl_AppendResult marks the end of the strings to
append. Since the result is initially empty, the first call to Tcl_AppendResult just sets
the result to argv[1]; each additional call appends one more argument preceded by a
separator space.

Tcl_AppendElement is similar to Tcl_AppendResult except that it only
adds one string to the result at a time and it appends it as a list element instead of a raw

29.5 ClientData and deletion callbacks 275

DRAFT (4/16/93): Distribution Restricted

string. It’s useful for creating lists. For example, here is a simple implementation of the
list command:

int ListCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char **argv) {

int i;
for (i = 1; i < argc; i++) {

Tcl_AppendElement(interp, argv[i]);
}
return TCL_OK;

}

Each call to Tcl_AppendElement adds one argument to the result. The argument is
converted to a proper list element before appending it to the result (e.g. it is enclosed in
braces if it contains space characters). Tcl_AppendElement also adds a separator
space if it’s needed before the new element (no space is added if the result is currently
empty or if its characters are “ {“, which means that the new element will be the first ele-
ment of a sub-list). For example, if ListCmd is invoked with four arguments, “list”,
“abc”, “x y”, and “}”, it produces the following result:

abc {x y} \}

Like Tcl_AppendResult, Tcl_AppendElement grows the result space if needed
and does it in a way that is efficient even for large results and repeated calls.

If you set the result for an interpreter and then decide that you want to discard it (e.g.
because an error has occurred and you want to replace the current result with an error mes-
sage), you should call the procedure Tcl_ResetResult. It will invoke
interp->freeProc if needed and then restore the interpreter’s result to its initialized
state. You can then store a new value in the result in any of the usual ways. You need not
call Tcl_ResetResult if you’re going to use Tcl_SetResult to store the new
result, since Tcl_SetResult takes care of freeing any existing result.

29.5 ClientData and deletion callbacks

The fourth and fifth arguments to Tcl_CreateCommand, clientData and
deleteProc, were not discussed in Section 29.2 but they are useful when commands
are associated with objects. The clientData argument is used to pass a one-word value
to a command procedure. Tcl saves the clientData value that is passed to Tcl_Cre-
ateCommand and uses it as the first argument to the command procedure. The type
ClientData is large enough to hold either an integer or a pointer value. It is usually the
address of a C data structure for the command to manipulate.

Tcl and Tk use callback procedures in many places. A callback is a procedure whose
address is passed to a library procedure and saved in a data structure. Later, at some signif-
icant time, the address is used to invoke the procedure (“call it back”). A command proce-

276 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

dure is an example of a callback: Tcl associates the procedure address with a Tcl command
name and calls the procedure whenever the command is invoked. When a callback is spec-
ified in Tcl or Tk a ClientData argument is usually provided along with the procedure
address and the ClientData value is passed to the callback as its first argument.

The deleteProc argument to Tcl_CreateCommand specifies a deletion call-
back. If its value isn’t NULL then it is the address of a procedure for Tcl to invoke when
the command is deleted. The procedure must match the following prototype:

typedef void Tcl_CmdDeleteProc(ClientData clientData);

The deletion callback takes a single argument, which is the ClientData value specified
when the command was created. Deletion callbacks are used for purposes such as freeing
the object associated with a command.

Figure 29.1 shows how clientData and deleteProc can be used to implement
counter objects. The application containing this code must register CounterCmd as a Tcl
command using the following call:

Tcl_CreateCommand(interp, "counter", CounterCmd,
(ClientData) NULL, (Tcl_CmdDeleteProc) NULL);

New counters can then be created by invoking the counter Tcl command; each invoca-
tion creates a new object and returns a name for that object:

counter

ctr0

counter

ctr1

CounterCmd is the command procedure for counter. It allocates a structure for the
new counter and initializes its value to zero. Then it creates a name for the counter using
the static variable id, arranges for that name to be returned as the command’s result, and
increments id so that the next new counter will get a different name.

This example uses the object-oriented style described in Section 27.3, where there is
one command for each counter object. As part of creating a new counter CounterCmd
creates a new Tcl command named after the counter. It uses the address of the Counter
structure as the ClientData for the command and specifies DeleteCounter as the
deletion callback for the new command.

Counters can be manipulated by invoking the commands named after them. Each
counter supports two options to its command: get, which returns the current value of the
counter, and next, which increments the counter’s value. Once ctr0 and ctr1 were
created above, the following Tcl commands could be invoked:

ctr0 next; ctr0 next; ctr0 get

2

ctr1 get

0

29.5 ClientData and deletion callbacks 277

DRAFT (4/16/93): Distribution Restricted

typedef struct {
int value;

} Counter;

int CounterCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Counter *counterPtr;
static int id = 0;
if (argc != 1) {

interp->result = "wrong # args";
return TCL_ERROR;

}
counterPtr = (Counter *) malloc(sizeof(Counter));
counterPtr->value = 0;
sprintf(interp->result, "ctr%d", id);
id++;
Tcl_CreateCommand(interp, interp->result, ObjectCmd,

(ClientData) counterPtr, DeleteCounter);
return TCL_OK;

}

int ObjectCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

CounterPtr *counterPtr = (Counter *) clientData;
if (argc != 2) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (strcmp(argv[1], "get") == 0) {

sprintf(interp->result, "%d", counterPtr->value);
} else if (strcmp(argv[1], "next") == 0) {

counterPtr->value++;
} else {

Tcl_AppendResult(interp, "bad counter command \"",
argv[1], "\": should be get or next",
(char *) NULL);

return TCL_ERROR;
}
return TCL_OK;

}

void DeleteCounter(ClientData clientData) {
free((char *) clientData);

}

Figure 29.1. An implementation of counter objects.

278 Creating New Tcl Commands

DRAFT (4/16/93): Distribution Restricted

ctr0 clear

bad counter command "clear": should be get or next

The procedure ObjectCmd implements the Tcl commands for all existing counters. It is
passed a different ClientData argument for each counter, which it casts back to a value
of type Counter *. ObjectCmd then checks argv[1] to see which command option
was invoked. If it was get then it returns the counter’s value as a decimal string; if it was
next then it increments the counter’s value and leaves interp->result untouched
so that the result is an empty string. If an unknown command was invoked then
ObjectCmd calls Tcl_AppendResult to create a useful error message.

Note: It is not safe to create the error message with a statement like
sprintf(interp->result, "bad counter command \"%s\": "

"should be get or next", argv[1]);

This is unsafe becauseargv[1] has unknown length. It could be so long thatsprintf
overflows the space allocated in the interpreter and corrupts memory .
Tcl_AppendResult is safe because it checks the lengths of its arguments and
allocates as much space as needed for the result.

To destroy a counter you can delete its Tcl command, for example:

rename ctr0 {}

As part of deleting the command Tcl will invoke DeleteProc, which frees up the mem-
ory associated with the counter.

This object-oriented implementation of counter objects is similar to Tk’s implementa-
tion of widgets: there is one Tcl command to create new instances of each counter or wid-
get, and one Tcl command for each existing counter or widget. A single command
procedure implements all of the counter or widget commands for a particular type of
object, receiving a ClientData argument that identifies a specific counter or widget. A dif-
ferent mechanism is used to delete Tk widgets than for counters above, but in both cases
the command corresponding to the object is deleted at the same time as the object.

29.6 Deleting commands

Tcl commands can be removed from an interpreter by calling Tcl_DeleteCommand.
For example, the statement below will delete the ctr0 command in the same way as the
rename command above:

Tcl_DeleteCommand(interp, "ctr0");

If the command has a deletion callback then it will be invoked before the command is
removed. Any command may be deleted, including built-in commands, application-spe-
cific commands, and Tcl procedures.

279

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 30
Parsing

This chapter describes Tcl library procedures for parsing and evaluating strings in various
forms such as integers, expressions and lists. These procedures are typically used by com-
mand procedures to process the words of Tcl commands. See Table 30.1 for a summary of
the procedures.

30.1 Numbers and booleans

Tcl provides three procedures for parsing numbers and boolean values:Tcl_GetInt,
Tcl_GetDouble, andTcl_GetBoolean. Each of these procedures takes three argu-
ments: an interpreter, a string, and a pointer to a place to store the value of the string. Each
of the procedures returnsTCL_OK orTCL_ERROR to indicate whether the string was
parsed successfully. For example, the command procedure below usesTcl_GetInt to
implement asum command:

int SumCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

int num1, num2;
if (argc != 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_GetInt(interp, argv[1], &num1) != TCL_OK) {

return TCL_ERROR;
}

FIGURE 30

TABLE 30

280 Parsing

DRAFT (4/16/93): Distribution Restricted

if (Tcl_GetInt(interp, argv[2], &num2) != TCL_OK) {
return TCL_ERROR;

}
sprintf(interp->result, "%d", num1+num2);

int Tcl_GetInt(Tcl_Interp *interp, char *string, int *intPtr)
Parses string as an integer, stores value at *intPtr, and returns
TCL_OK. If an error occurs while parsing, returns TCL_ERROR and stores
an error message in interp->result.

int Tcl_GetDouble(Tcl_Interp *interp, char *string, double *dou-
blePtr)
Same as Tcl_GetInt except parses string as a floating-point value and
stores value at *doublePtr.

int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *intPtr)
Same as Tcl_GetInt except parses string as a boolean and stores 0/1
value at *intPtr. See Table 30.2 for legal values for string.

int Tcl_ExprString(Tcl_Interp *interp, char *string)
Evaluates string as an expression, stores value as string in
interp->result, and returns TCL_OK. If an error occurs during evalua-
tion, returns TCL_ERROR and stores an error message in interp-
>result.

int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *longPtr)
Same as Tcl_ExprString except stores value as a long integer at
*longPtr. An error occurs if the value can’t be converted to an integer.

int Tcl_ExprDouble(Tcl_Interp *interp, char *string,
 double *doublePtr)

Same as Tcl_ExprString except stores value as double-precision float-
ing-point value at *doublePtr. An error occurs if the value can’t be con-
verted to a floating-point number.

int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int
*intPtr)
Same as Tcl_ExprString except stores value as 0/1 integer at
*intPtr. An error occurs if the value can’t be converted to a boolean
value.

int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr,
char ***argvPtr)

Parses list as a Tcl list and creates an array of strings whose values are the
elements of list. Stores count of number of list elements at *argcPtr and
pointer to array at *argvPtr. Returns TCL_OK. If an error occurs while
parsing list, returns TCL_ERROR and stores an error message in
interp->result. Space for string array is dynamically allocated; caller
must eventually pass *argvPtr to free.

char *Tcl_Merge(int argc, char **argv)
Inverse of Tcl_SplitList. Returns pointer to Tcl list whose elements are
the members of argv. Result is dynamically-allocated; caller must eventu-
ally pass it to free.

30.1 Numbers and booleans 281

DRAFT (4/16/93): Distribution Restricted

return TCL_OK;
}

SumCmd expects each of the command’s two arguments to be an integer. It calls
Tcl_GetInt to convert them from strings to integers, then it sums the values and con-
verts the result back to a decimal string in interp->result. Tcl_GetInt accepts
strings in decimal (e.g. “492”), hexadecimal (e.g. “0x1ae”) or octal (e.g. “017”), and
allows them to be signed and preceded by white space. If the string is in one of these for-
mats then Tcl_GetInt returns TCL_OK and stores the value of the string in the location
pointed to by its last argument. If the string can’t be parsed correctly then Tcl_GetInt
stores an error message in interp->result and returns TCL_ERROR; SumCmd then
returns TCL_ERROR to its caller with interp->result still pointing to the error mes-
sage from Tcl_GetInt.

Here are some examples of invoking the sum command in Tcl scripts:

sum 2 3

5

sum 011 0x14

29

sum 3 6z

expected integer but got "6z"

Tcl_GetDouble is similar to Tcl_GetInt except that it expects the string to
consist of a floating-point number such as “-2.2” or “3.0e-6” or “7”. It stores the dou-
ble-precision value of the number at the location given by its last argument or returns an
error in the same way as Tcl_GetInt. Tcl_GetBoolean is similar except that it con-
verts the string to a 0 or 1 integer value, which it stores at the location given by its last
argument. Any of the true values listed in Table 30.2 converts to 1 and any of the false val-
ues converts to 0.

Table 30.2. Legal values for boolean strings parsed by Tcl_GetBoolean. Any of the values
may be abbreviated or capitalized.

True Values False Values

1 0

true false

on off

yes no

282 Parsing

DRAFT (4/16/93): Distribution Restricted

Many other Tcl and Tk library procedures are similar to Tcl_GetInt in the way
they use an interp argument for error reporting. These procedures all expect the inter-
preter’s result to be in its initialized state when they are called. If they complete success-
fully then they usually leave the result in that state; if an error occurs then they put an error
message in the result. The procedures’ return values indicate whether they succeeded, usu-
ally as a TCL_OK or TCL_ERROR completion code but sometimes in other forms such as
a NULL string pointer. When an error occurs, all the caller needs to do is to return a failure
itself, leaving the error message in the interpreter’s result.

30.2 Expression evaluation

Tcl provides four library procedures that evaluate expressions of the form described in
Chapter XXX: Tcl_ExprString, Tcl_ExprLong, Tcl_ExprDouble, and
Tcl_ExprBoolean. These procedures are similar except that they return the result of
the expression in different forms as indicated by their names. Here is a slightly simplified
implementation of the expr command, which uses Tcl_ExprString:

int ExprCmd(ClientData clientData, TclInterp *interp,
int argc, char *argv[]) {

if (argc != 2) {
interp->result = "wrong # args";
return TCL_ERROR;

}
return Tcl_ExprString(interp, argv[1]);

}

All ExprCmd does is to check its argument count and then call Tcl_ExprString.
Tcl_ExprString evaluates its second argument as a Tcl expression and returns the
value as a string in interp->result. Like Tcl_GetInt, it returns TCL_OK if it
evaluated the expression successfully; if an error occurs it leaves an error message in
interp->result and returns TCL_ERROR.

Tcl_ExprLong, Tcl_ExprDouble, and Tcl_ExprBoolean are similar to
Tcl_ExprString except that they return the expression’s result as a long integer, dou-
ble-precision floating-point number, or 0/1 integer, respectively. Each of the procedures
takes an additional argument that points to a place to store the result. For these procedures
the result must be convertible to the requested type. For example, if “abc” is passed to
Tcl_ExprLong then it will return an error because “abc” has no integer value. If the
string “40” is passed to Tcl_ExprBoolean it will succeed and store 1 in the value
word (any non-zero integer is considered to be true).

30.3 Manipulating lists 283

DRAFT (4/16/93): Distribution Restricted

30.3 Manipulating lists

Tcl provides several procedures for manipulating lists, of which the most useful are
Tcl_SplitList and Tcl_Merge. Given a string in the form of a Tcl list,
Tcl_SplitList extracts the elements and returns them as an array of string pointers.
For example, here is an implementation of Tcl’s lindex command that uses
Tcl_SplitList:

int LindexCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

int index, listArgc;
char **listArgv;
if (argc != 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_GetInt(interp, argv[2], &index) != TCL_OK) {

return TCL_ERROR;
}
if (Tcl_SplitList(interp, argv[1], &listArgc,

&listArgv) != TCL_OK) {
return TCL_ERROR;

}
if ((index >= 0) && (index < listArgc)) {

Tcl_SetResult(interp, listArgv[index],
TCL_VOLATILE);

}
free((char *) listArgv);
return TCL_OK;

}

LindexCmd checks its argument count, calls Tcl_GetInt to convert argv[2] (the
index) into an integer, then calls Tcl_SplitList to parse the list. Tcl_SplitList
returns a count of the number of elements in the list to listArgc. It also creates an array
of pointers to the values of the elements and stores a pointer to that array in listArgv. If
Tcl_SplitList encounters an error in parsing the list (e.g. unmatched braces) then it
returns TCL_ERROR and leaves an error message in interp->result; otherwise it
returns TCL_OK.

Tcl_SplitList calls malloc to allocate space for the array of pointers and for
the string values of the elements; the caller must free up this space by passing listArgv
to free. The space for both pointers and strings is allocated in a single block of memory
so only a single call to free is needed. LindexCmd calls Tcl_SetResult to copy the
desired element into the interpreter’s result. It specifies TCL_VOLATILE to indicate that
the string value is about to be destroyed (its memory will be freed); Tcl_SetResult
will make a copy of the listArgv[index] for interp’s result. If the specified index

284 Parsing

DRAFT (4/16/93): Distribution Restricted

is outside the range of elements in the list then LindexCmd leaves interp->result
in its initialized state, which returns an empty string.

Tcl_Merge is the inverse of Tcl_SplitList. Given argc and argv informa-
tion describing the elements of a list, it returns a malloc’ed string containing the list.
Tcl_Merge always succeeds so it doesn’t need an interp argument for error reporting.
Here’s another implementation of the list command, which uses Tcl_Merge:

int ListCmd2(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

interp->result = Tcl_Merge(argc-1, argv+1);
interp->freeProc = (Tcl_FreeProc *) free;
return TCL_OK;

}

ListCmd2 takes the result from Tcl_Merge and stores it in the interpreter’s result.
Since the list string is dynamically allocated ListCmd2 sets interp->freeProc to
free so that Tcl will call free to release the storage for the list when it is no longer
needed.

285

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 31
Exceptions

Many Tcl commands, such asif andwhile, have arguments that are Tcl scripts. The
command procedures for these commands invokeTcl_Eval recursively to evaluate the
scripts. IfTcl_Eval returns a completion code other thanTCL_OK then anexception is
said to have occurred. Exceptions includeTCL_ERROR, which was described in Chapter
31, plus several others that have not been mentioned before. This chapter introduces the
full set of exceptions and describes how to unwind nested evaluations and leave useful
information in theerrorInfo anderrorCode variables. See Table 31.1 for a sum-
mary of procedures related to exception handling.

31.1 Completion codes.

Table 31.2 lists the full set of Tcl completion codes that may be returned by command pro-
cedures. If a command procedure returns anything other thanTCL_OK then Tcl aborts the
evaluation of the script containing the command and returns the same completion code as
the result ofTcl_Eval (orTcl_EvalFile, etc).TCL_OK andTCL_ERROR have
already been discussed; they are used for normal returns and errors, respectively. The
completion codesTCL_BREAK orTCL_CONTINUE occur ifbreak orcontinue com-
mands are invoked by a script; in both of these cases the interpreter’s result will be an
empty string. TheTCL_RETURN completion code occurs ifreturn is invoked; in this
case the interpreter’s result will be the intended result of the enclosing procedure.

As an example of how to generate aTCL_BREAK completion code, here is the com-
mand procedure for thebreak command:

FIGURE 31

TABLE 31

286 Exceptions

DRAFT (4/16/93): Distribution Restricted

int BreakCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

if (argc != 2) {
interp->result = "wrong # args";
return TCL_ERROR;

}
return TCL_BREAK;

}

TCL_BREAK, TCL_CONTINUE, and TCL_RETURN are used to unwind nested
script evaluations back to an enclosing looping command or procedure invocation. Under
most circumstances, any procedure that receives a completion code other than TCL_OK
from Tcl_Eval should immediately return that same completion code to its caller with-
out modifying the interpreter’s result. However, a few commands process some of the spe-
cial completion codes without returning them upward. For example, here is an
implementation of the while command:

Table 31.1. A summary of Tcl library procedures for setting errorInfo and errorCode.

Tcl_AddErrorInfo(Tcl_Interp *interp, char *message)
Adds message to stack trace being formed in the errorInfo variable.

Tcl_SetErrorCode(Tcl_Interp *interp, char *field, char *field,
... (char *) NULL)

Creates a list whose elements are the field arguments, and sets the
errorCode variable to the contents of the list.

Table 31.2. Completion codes that may be returned by command procedures and procedures that
evaluate scripts, such as Tcl_Eval.

Completion Code Meaning

TCL_OK Command completed normally.

TCL_ERROR Unrecoverable error occurred.

TCL_BREAK Break command was invoked.

TCL_CONTINUE Continue command was invoked.

TCL_RETURN Return command was invoked.

31.1 Completion codes. 287

DRAFT (4/16/93): Distribution Restricted

int WhileCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

int bool;
int code;
if (argc != 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
while (1) {

Tcl_ResetResult(interp);
if (Tcl_ExprBoolean(interp, argv[1], &bool)

!= TCL_OK) {
return TCL_ERROR;

}
if (bool == 0) {

return TCL_OK;
}
code = Tcl_Eval(interp, argv[2]);
if (code == TCL_CONTINUE) {

continue;
} else if (code == TCL_BREAK) {

return TCL_OK;
} else if (code != TCL_OK) {

return code;
}

}
}

After checking its argument count, WhileCmd enters a loop where each iteration evalu-
ates the command’s first argument as an expression and its second argument as a script. If
an error occurs while evaluating the expression then WhileCmd returns the error. If the
expression evaluates successfully but its value is 0, then the command terminates with a
normal return. Otherwise it evaluates the script argument. If the completion code is
TCL_CONTINUE then WhileCmd goes on to the next loop iteration. If the code is
TCL_BREAK then WhileCmd ends the execution of the command and returns TCL_OK
to its caller. If Tcl_Eval returns any other completion code besides TCL_OK then Whi-
leCmd simply reflects that code upwards. This causes the proper unwinding to occur on
TCL_ERROR or TCL_RETURN codes, and it will also unwind if any new completion
codes are added in the future.

If an exceptional return unwinds all the way through the outermost script being evalu-
ated then Tcl checks the completion code to be sure it is either TCL_OK or TCL_ERROR.
If not then Tcl turns the return into an error with an appropriate error message. Further-
more, if a TCL_BREAK or TCL_CONTINUE exception unwinds all the way out of a pro-
cedure then Tcl also turns it into an error. For example:

288 Exceptions

DRAFT (4/16/93): Distribution Restricted

break

invoked "break" outside of a loop

proc badbreak {} {break}
badbreak

invoked "break" outside of a loop

Thus applications need not worry about completion codes other then TCL_OK and
TCL_ERROR when they evaluate scripts from the outermost level.

31.2 Augmenting the stack trace in errorInfo

When an error occurs, Tcl modifies the errorInfo global variable to hold a stack trace
of the commands that were being evaluated at the time of the error. It does this by calling
the procedure Tcl_AddErrorInfo, which has the following prototype:

void Tcl_AddErrorInfo(Tcl_Interp *interp,
char *message)

The first call to Tcl_AddErrorInfo after an error sets errorInfo to the error mes-
sage stored in interp->result and then appends message. Each subsubsequent call
for the same error appends message to errorInfo’s current value. Whenever a com-
mand procedure returns TCL_ERROR Tcl_Eval calls Tcl_AddErrorInfo to log
information about the command that was being executed. If there are nested calls to
Tcl_Eval then each one adds information about its command as it unwinds, so that a
stack trace forms in errorInfo.

Command procedures can call Tcl_AddErrorInfo themselves to provide addi-
tional information about the context of the error. This is particularly useful for command
procedures tha invoke Tcl_Eval recursively. For example, consider the following Tcl
procedure, which is a buggy attempt to find the length of the longest element in a list:

proc longest list {
set i [llength $list]
while {$i >= 0} {

set length [string length [lindex $list $i]]
if {$length > $max} {

set max $length
}
incr i

}
return $max

}

This procedure is buggy because it never initializes the variable max, so an error will
occur when the if command attempts to read it. If the procedure is invoked with the com-

31.2 Augmenting the stack trace in errorInfo 289

DRAFT (4/16/93): Distribution Restricted

mand “longest {a 12345 xyz} ”, then the following stack trace will be stored in
errorInfo after the error:

can’t read "max": no such variable
while executing

"if {$length > $max} {
set max $length

}"
("while" body line 3)
invoked from within

"while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {

set max $length
}
incr i

}"
(procedure "longest" line 3)
invoked from within

"longest {a 12345 xyz}"

All of the information is provided by Tcl_Eval except for the two lines with comments
in parentheses. The first of these lines was generated by the command procedure for
while , and the second was generated by the Tcl code that evaluates procedure bodies. If
you used the implementation of while on page 287 instead of the built-in Tcl implemen-
tation then the first parenthesized message would be missing. The C code below is a
replacement for the last else clause in WhileCmd ; it uses Tcl_AppendResult to
add the parenthetical remark.

...
} else if (code != TCL_OK) {

if (code == TCL_ERROR) {
char msg[50];
sprintf(msg, "\n (\"while\" body line %d)",

interp->errorLine);
Tcl_AddErrorInfo(interp, msg);

}
return code;

}
...

The errorLine field of interp is set by Tcl_Eval whenever a command procedure
returns an error; it gives the line number of the command that produced the error, within
the script being executed. A line number of 1 corresponds to the first line, which is the line
containing the open brace in this example; the if command that generated the error is on
line 3.

290 Exceptions

DRAFT (4/16/93): Distribution Restricted

For simple Tcl commands you shouldn’t need to invoke Tcl_AddErrorInfo: the
information provided by Tcl_Eval will be sufficient. However, if you write code that
calls Tcl_Eval then I recommend calling Tcl_AddErrorInfo whenever
Tcl_Eval returns an error, to provide information about why Tcl_Eval was invoked
and also to include the line number of the error.

Note: You must callTcl_AddErrorInfo rather than trying to set theerrorInfo variable
directly, becauseTcl_AddErrorInfo contains special code to detect the first call after
an error and clear out the old contents oferrorInfo.

31.3 Setting errorCode

The last piece of information set after an error is the errorCode variable, which pro-
vides information about the error in a form that’s easy to process with Tcl scripts. It’s
intended for use in situations where a script is likely to catch the error, determine exactly
what went wrong, and attempt to recover from it if possible. If a command procedure
returns an error to Tcl without setting errorCode then Tcl sets it to NONE. If a command
procedure wishes to provide information in errorCode then it should invoke Tcl_Se-
tErrorCode before returning TCL_ERROR.

Tcl_SetErrorCode takes as arguments an interpreter and any number of string
arguments ending with a null pointer. It forms the strings into a list and stores the list as
the value of errorCode. For example, suppose that you have written several commands
to implement gizmo objects, and that there are several errors that could occur in com-
mands that manipulate the objects, such as an attempt to use a non-existent object. If one
of your command procedures detects a non-existent object error, it might set errorCode
as follows:

Tcl_SetErrorCode(interp, "GIZMO", "EXIST",
"no object by that name", (char *) NULL);

This will leave the value “GIZMO EXIST {no object by that name}” in
errorCode. GIZMO identifies a general class of errors (those associated with gizmo
objects), EXIST is the symbolic name for the particular error that occurred, and the last
element of the list is a human-readable error message. You can store whatever you want in
errorCode as long as the first list element doesn’t conflict with other values already in
use, but the overall idea is to provide symbolic information that can easily be processed by
a Tcl script. For example, a script that accesses gizmos might catch errors and if the error
is a non-existent gizmo it might automatically create a new gizmo.

Note: It’s important to callTcl_SetErrorCode rather than settingerrorCode directly
withTcl_SetVar. This is becauseTcl_SetErrrorCode also sets other information
in the interpreter so thaterrorCode isn’t later set to its default value; if you set
errorCode directly, then Tcl will override your value with the default valueNONE.

291

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 32
Accessing Tcl Variables

This chapter describes how you can access Tcl variables from C code. Tcl provides library
procedures to set variables, read their values, and unset them. It also provides a tracing
mechanism that you can use to monitor and restrict variable accesses. Table 32.1 summa-
rizes the library procedures that are discussed in the chapter.

32.1 Naming variables

The procedures related to variables come in pairs such asTcl_SetVar andTcl_Set-
Var2. The two procedures in each pair differ only in the way they name a Tcl variable. In
the first procedure of each pair, such asTcl_SetVar, the variable is named with a single
string argument,varName. This form is typically used when a variable name has been
specified as an argument to a Tcl command. The string can name a scalar variable, e.g. “x”
or “fieldName”, or it can name an element of an array, e.g. “a(42)” or
“area(South America)”. No substitutions or modifications are performed on the
name. For example, ifvarName is “a($i)” Tcl will not use the value of variablei as
the element name within arraya; it will use the string “$i” literally as the element name.

The second procedure of each pair has a name ending in “2”, e.g.Tcl_SetVar2. In
these procedures the variable name is separated into two arguments:name1 andname2.
If the variable is a scalar thenname1 is the name of the variable andname2 isNULL. If
the variable is an array element thenname1 is the name of the array andname2 is the
name of the element within the array. This form of procedure is less commonly used but it
is slightly faster than the first form (procedures likeTcl_SetVar are implemented by
calling procedures likeTcl_SetVar2).

FIGURE 32

TABLE 32

292 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

Table 32.1. Tcl library procedures for manipulating variables. The procedures come in pairs; in one
procedure the variable is named with a single string (which may specify either a scalar or an array
element) and in the other procedure the variable is named with separate array and element names
(name1 and name2, respectively). If name2 is NULL then the variable must be a scalar.

char *Tcl_SetVar(Tcl_Interp *interp, char *varName,
char *newValue, int flags)

char *Tcl_SetVar2(Tcl_Interp *interp, char *name1, char *name2,
char *newValue, int flags)

Sets the value of the variable to newValue, creating the variable if it didn’t
already exist. Returns the new value of the variable or NULL in case of error.

char *Tcl_GetVar(Tcl_Interp *interp, char *varName,
int flags)

char *Tcl_GetVar2(Tcl_Interp *interp, char *name1, char *name2,
int flags)

Returns the current value of the variable, or NULL in case of error.
int Tcl_UnsetVar(Tcl_Interp *interp, char *varName,

int flags)
int Tcl_UnsetVar2(Tcl_Interp *interp, char *name1, char *name2,

int flags)
Removes the variable from interp and returns TCL_OK. If the variable
doesn’t exist or has an active trace then it can’t be removed and
TCL_ERROR is returned.

int Tcl_TraceVar(Tcl_Interp *interp, char *varName,
int flags, Tcl_VarTraceProc *proc, ClientData clientData)

int Tcl_TraceVar2(Tcl_Interp *interp, char *name1, char *name2,
int flags, Tcl_VarTraceProc *proc, ClientData clientData)

Arrange for proc to be invoked whenever one of the operations specified by
flags is performed on the variable. Returns TCL_OK or TCL_ERROR.

Tcl_UntraceVar(Tcl_Interp *interp, char *varName,
int flags, Tcl_VarTraceProc *proc, ClientData clientData)

Tcl_UntraceVar2(Tcl_Interp *interp, char *name1, char *name2,
int flags, Tcl_VarTraceProc *proc, ClientData clientData)

Removes the trace on the variable that matches proc, clientData, and
flags, if there is one.

ClientData Tcl_VarTraceInfo(Tcl_Interp *interp, char *varName,
int flags, Tcl_VarTraceProc *proc, ClientData prevClientData)

ClientData Tcl_VarTraceInfo2(Tcl_Interp *interp, char *name1,
char *name2, int flags, Tcl_VarTraceProc *proc,
ClientData prevclientData)

If prevClientData is NULL, returns the ClientData associated with the
first trace on the variable that matches flags and proc (only the
TCL_GLOBAL_ONLY bit of flags is used); otherwise returns the Cli-
entData for the next trace matching flags and proc after the one whose
ClientData is prevClientData. Returns NULL if there are no (more)
matching traces.

32.2 Setting variable values 293

DRAFT (4/16/93): Distribution Restricted

32.2 Setting variable values

Tcl_SetVar and Tcl_SetVar2 are used to set the value of a variable. For example,

Tcl_SetVar(interp, "a", "44", 0);

will set the value of variable a in interp to the string “44”. If there does not yet exist a
variable named a then a new one will be created. The variable is set in the current execu-
tion context: if a Tcl procedure is currently being executed, the variable will be a local one
for that procedure; if no procedure is currently being executed then the variable will be a
global variable. If the operation completed successfully then the return value from
Tcl_SetVar is a pointer to the variable’s new value as stored in the variable table (this
value is static enough to be used as an interpreter’s result). If an error occurred, such as
specifying the name of an array without also specifying an element name, then NULL is
returned.

The last argument to Tcl_SetVar or Tcl_SetVar2 consists of an OR’ed combi-
nation of flag bits. Table 32.2 lists the symbolic values for the flags. If the TCL_GLOBA-
L_ONLY flag is specified then the operation always applies to a global variable, even if a
Tcl procedure is currently being executed. TCL_LEAVE_ERR_MSG controls how errors
are reported. Normally, Tcl_SetVar and Tcl_SetVar2 just return NULL if an error
occurs. However, if TCL_LEAVE_ERR_MSG has been specified then the procedures will
also store an error message in the interpreter’s result. This last form is useful when the
procedure is invoked from a command procedure that plans to abort if the variable access
fails.

The flag TCL_APPEND_VALUE means that the new value should be appended to the
variable’s current value instead of replacing it. Tcl implements the append operation in a

Table 32.2. Values that may be OR’ed together in the flags arguments to Tcl_SetVar and
Tcl_SetVar2. Other procedures use a subset of these flags.

Flag Name Meaning

TCL_GLOBAL_ONLY Reference global variable, regardless of
current execution context.

TCL_LEAVE_ERR_MSG If operation fails, leave error message in
interp->result.

TCL_APPEND_VALUE Append new value to existing value
instead of overwriting.

TCL_LIST_ELEMENT Convert new value to a list element before
setting or appending.

294 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

way that is relatively efficient, even in the face of repeated appends to the same variable. If
the variable doesn’t yet exist then TCL_APPEND_VALUE has no effect.

The last flag, TCL_LIST_ELEMENT, means that the new value should be converted
to a proper list element (e.g. by enclosing in braces if necessary) before setting or append-
ing. If both TCL_LIST_ELEMENT and TCL_APPEND_VALUE are specified then a sepa-
rator space is also added before the new element if it’s needed.

Here is an implementation of the lappend command that uses Tcl_SetVar:

int LappendCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

int i;
char *newValue;
if (argc < 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
for (i = 2; i < argc; i++) {

newValue = Tcl_SetVar(interp, argv[1], argv[i],
TCL_LIST_ELEMENT|TCL_APPEND_VALUE
|TCL_LEAVE_ERR_MSG);

if (newValue == NULL) {
return TCL_ERROR;

}
}
interp->result = newValue;
return TCL_OK;

}

It simply calls Tcl_SetVar once for each argument and lets Tcl_SetVar do all the
work of converting the argument to a list value and appending it to the variable. If an error
occurs then Tcl_SetVar leaves an error message in interp->result and Lap-
pendCmd returns the message back to Tcl. If the command completes successfully then it
returns the variable’s final value as its result. For example, suppose the following Tcl com-
mand is invoked:

set a 44
lappend a x {b c}

44 x {b c}

When LappendCmd is invoked argc will be 4. Argv[2] will be “x” and argv[3]
will be “b c” (the braces are removed by the Tcl parser). LappendCmd makes two calls
to Tcl_SetVar; during the first call no conversion is necessary to produce a proper list
element, but during the second call Tcl_SetVar adds braces back around “b c” before
appending it the variable.

32.3 Reading variables 295

DRAFT (4/16/93): Distribution Restricted

32.3 Reading variables

The procedures Tcl_GetVar and Tcl_GetVar2 may be used to retrieve variable val-
ues. For example,

char *value;
...
value = Tcl_GetVar(interp, "a", 0);

will store in value a pointer to the current value of variable a. If the variable doesn’t
exist or some other error occurs then NULL is returned. Tcl_GetVar and Tcl_Get-
Var2 support the TCL_GLOBAL_ONLY and TCL_LEAVE_ERR_MSG flags in the same
way as Tcl_SetVar. The following command procedure uses Tcl_GetVar and
Tcl_SetVar to implement the incr command:

int IncrCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

int value, inc;
char *string;
if ((argc != 2) && (argc != 3)) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (argc == 2) {

inc = 1;
} else if (Tcl_GetInt(interp, argv[2], &inc)

!= TCL_OK) {
return TCL_ERROR;

}
string = Tcl_GetVar(interp, argv[1],

TCL_LEAVE_ERR_MSG);
if (string == NULL) {

return TCL_ERROR;
}
if (Tcl_GetInt(interp, string, &value) != TCL_OK) {

return TCL_ERROR;
}
sprintf(interp->result, "%d", value + inc);
if (Tcl_SetVar(interp, argv[1], interp->result,

TCL_LEAVE_ERR_MSG) == NULL) {
return TCL_ERROR;

}
return TCL_OK;

}

IncrCmd does very little work itself. It just calls library procedures and aborts if errors
occur. The first call to Tcl_GetInt converts the increment from text to binary.

296 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

Tcl_GetVar retrieves the original value of the variable, and another call to Tcl_Get-
Int converts that value to binary. IncrCmd then adds the increment to the variable’s
value and calls sprintf to convert the result back to text. Tcl_SetVar stores this
value in the variable, and IncrCmd then returns the new value as its result.

32.4 Unsetting variables

To remove a variable, call Tcl_UnsetVar or Tcl_UnsetVar2. For example,

Tcl_UnsetVar2(interp, "population", "Michigan", 0);

will remove the element Michigan from the array population. This statement has
the same effect as the Tcl command

unset population(Michigan)

Tcl_UnsetVar and Tcl_UnsetVar2 return TCL_OK if the variable was successfully
removed and TCL_ERROR if the variable didn’t exist or couldn’t be removed for some
other reason. TCL_GLOBAL_ONLY and TCL_LEAVE_ERR_MSG may be specified as
flags to these procedures. If an array name is given without an element name then the
entire array is removed.

32.5 Setting and unsetting variable traces

Variable traces allow you to specify a C procedure to be invoked whenever a variable is
read, written, or unset. Traces can be used for many purposes. For example, in Tk you can
configure a button widget so that it displays the value of a variable and updates itself auto-
matically when the variable is modified. This feature is implemented with variable traces.
You can also use traces for debugging, to create read-only variables, and for many other
purposes.

The procedures Tcl_TraceVar and Tcl_TraceVar2 create variable traces, as in
the following example:

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, WriteProc,
(ClientData) NULL);

This creates a write trace on variable x in interp: WriteProc will be invoked when-
ever x is modified. The third argument to Tcl_TraceVar is an OR’ed combination of
flag bits that select the operations to trace: TCL_TRACE_READS for reads,
TCL_TRACE_WRITES for writes, and TCL_TRACE_UNSETS for unsets. In addition,
the flag TCL_GLOBAL_ONLY may be specified to force the variable name to be inter-
preted as global. Tcl_TraceVar and Tcl_TraceVar2 normally return TCL_OK; if
an error occurs then they leave an error message in interp->result and return
TCL_ERROR.

32.6 Trace callbacks 297

DRAFT (4/16/93): Distribution Restricted

The library procedures Tcl_UntraceVar and Tcl_UntraceVar2 remove vari-
able traces. For example, the following call will remove the trace set above:

Tcl_UntraceVar(interp, "x", TCL_TRACE_WRITES,
WriteProc, (ClientData) NULL);

Tcl_UntraceVar finds the specified variable, looks for a trace that matches the flags,
trace procedure, and ClientData specified by its arguments, and removes the trace if it
exists. If no matching trace exists then Tcl_UntraceVar does nothing. Tcl_Un-
traceVar and Tcl_UntraceVar2 accept the same flag bits as Tcl_TraceVar.

32.6 Trace callbacks

Trace callback procedures such as WriteProc in the previous section must match the
following prototype:

typedef char *Tcl_VarTraceProc(ClientData clientData,
Tcl_Interp *interp, char *name1, char *name2,
int flags);

The clientData and interp arguments will be the same as the corresponding argu-
ments passed to Tcl_TraceVar or Tcl_TraceVar2. ClientData typically points
to a structure containing information needed by the trace callback. Name1 and name2
give the name of the variable in the same form as the arguments to Tcl_SetVar2.
Flags consists of an OR’ed combination of bits. One of TCL_TRACE_READS,
TCL_TRACE_WRITES, or TCL_TRACE_UNSETS is set to indicate which operation trig-
gered the trace, and TCL_GLOBAL_ONLY is set if the variable is a global variable that
isn’t accessible from the current execution context; the trace callback must pass this flag
back into procedures like Tcl_GetVar2 if it wishes to access the variable. The bits
TCL_TRACE_DESTROYED and TCL_INTERP_DESTROYED are set in special circum-
stances described below.

For read traces, the callback is invoked just before Tcl_GetVar or Tcl_GetVar2
returns the variable’s value to whomever requested it; if the callback modifies the value of
the variable then the modified value will be returned. For write traces the callback is
invoked after the variable’s value has been changed. The callback can modify the variable
to override the change, and this modified value will be returned as the result of
Tcl_SetVar or Tcl_SetVar2. For unset traces the callback is invoked after the vari-
able has been unset, so the callback cannot access the variable. Unset callbacks can occur
when a variable is explicitly unset, when a procedure returns (thereby deleting all of its
local variables) or when an interpreter is destroyed (thereby deleting all of the variables in
the interpreter).

A trace callback procedure can invoke Tcl_GetVar2 and Tcl_SetVar2 to read
and write the value of the traced variable. All traces on the variable are temporarily dis-
abled while the callback executes so calls to Tcl_GetVar2 and Tcl_SetVar2 will

298 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

not trigger additional trace callbacks. As mentioned above, unset traces aren’t invoked
until after the variable has been deleted, so attempts to read the variable during unset call-
backs will fail. However, it is possible for an unset callback procedure to write the vari-
able, in which case a new variable will be created.

The code below sets a write trace that prints out the new value of variable x each time
it is modified:

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, Print,
(ClientData) NULL);

...
char *Print(ClientData clientData,

Tcl_Interp *interp, char *name1, char *name2,
int flags) {

char *value;
value = Tcl_GetVar2(interp, name1, name2,

flags & TCL_GLOBAL_ONLY);
if (value != NULL) {

printf("new value is %s\n", value);
}
return NULL;

}

PrintProc must pass the TCL_GLOBAL_ONLY bit of its flags argument on to
Tcl_GetVar2 in order to make sure that the variable can be accessed properly.
Tcl_GetVar2 should never return an error, but PrintProc checks for one anyway
and doesn’t try to print the variable’s value if an error occurs.

Trace callbacks normally return NULL values; a non-NULL value signals an error. In
this case the return value must be a pointer to a static string containing an error message.
The traced access will abort and the error message will be returned to whomever initiated
that access. For example, if the access was invoked by a set command or $-substitution
then a Tcl error will result; if the access was invoked via Tcl_GetVar, Tcl_GetVar
will return NULL and also leave the error message in interp->result if the
TCL_LEAVE_ERR_MSG flag was specified.

The code below uses a trace to make variable x read-only with value 192:

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, Reject,
(ClientData) "192");

char *Reject(ClientData clientData, Tcl_Interp *interp,
char *name1, char *name2, int flags) {

char *correct = (char *) ClientData;
Tcl_SetVar2(interp, name1, name2, correct,

flags & TCL_GLOBAL_ONLY);
return "variable is read-only";

};

Reject is a trace callback that’s invoked whenever x is written. It returns an error mes-
sage to abort the write access. Since x has already been modified before Reject is

32.7 Whole-array traces 299

DRAFT (4/16/93): Distribution Restricted

invoked, Reject must undo the write by restoring the variable’s correct value. The cor-
rect value is passed to the trace callback using its clientData argument. This imple-
mentation allows the same procedure to be used as the write callback for many different
read-only variables; a different correct value can be passed to Reject for each variable.

32.7 Whole-array traces

You can create a trace on an entire array by specifying an array name to Tcl_TraceVar
or Tcl_TraceVar2 without an element name. This creates a whole-array trace: the call-
back procedure will be invoked whenever any of the specified operations is invoked on
any element of the array. If the entire array is unset then the callback will be invoked just
once, with name1 containing the array name and name2 NULL.

32.8 Multiple traces

Multiple traces can exist for the same variable. When this happens, each of the relevant
callbacks is invoked on each variable access. The callbacks are invoked in order from
most-recently-created to oldest. If there are both whole-array traces and individual ele-
ment traces, then the whole-array callbacks are invoked before element callbacks. If an
error is returned by one of the callbacks then no subsequent callbacks are invoked.

32.9 Unset callbacks

Unset callbacks are different from read and write callbacks in several ways. First of all,
unset callbacks cannot return an error condition; they must always succeed. Second, two
extra flags are defined for unset callbacks: TCL_TRACE_DELETED and
TCL_INTERP_DESTROYED. When a variable is unset all of its traces are deleted; unset
traces on the variable will still be invoked, but they will be passed the TCL_TRACE_DE-
LETED flag to indicate that the trace has now been deleted and won’t be invoked anymore.
If an array element is unset and there is a whole-array unset trace for the element’s array,
then the unset trace is not deleted and the callback will be invoked without the
TCL_TRACE_DELETED flag set.

If the TCL_INTERP_DESTROYED flag is set during an unset callback it means that
the interpreter containing the variable has been destroyed. In this case the callback must be
careful not to use the interpreter at all, since the interpreter’s state is in the process of
being deleted. All that the callback should do is to clean up its own internal data struc-
tures.

300 Accessing Tcl Variables

DRAFT (4/16/93): Distribution Restricted

32.10 Non-existent variables

It is legal to set a trace on a variable that does not yet exist. The variable will continue to
appear not to exist (e.g. attempts to read it will fail), but the trace’s callback will be
invoked during operations on the variable. For example, you can set a read trace on an
undefined variable and then, on the first access to the variable, assign it a default value.

32.11 Querying trace information

The procedures Tcl_VarTraceInfo and Tcl_VarTraceInfo2 can be used to find
out if a particular kind of trace has been set on a variable and if so to retrieve its Client-
Data value. For example, consider the following code:

ClientData clientData;
...
clientData = Tcl_VarTraceInfo(interp, "x", 0, Reject,

(ClientData) NULL);

Tcl_VarTraceInfo will see if there is a trace on variable x that has Reject as its
trace callback. If so, it will return the ClientData value associated with the first (most
recently created) such trace; if not it will return NULL. Given the code in Section 32.6
above, this call will tell whether x is read-only; if so, it will return the variable’s read-only
value. If there are multiple traces on a variable with the same callback, you can step
through them all in order by making multiple calls to Tcl_VarTraceInfo, as in the
following code:

ClientData clientData;
...
clientData = NULL;
while (1) {

clientData = Tcl_VarTraceInfo(interp, "x", 0,
Reject, clientData);

if (clientData == NULL) {
break;

}
... process trace ...

}

In each call to Tcl_VarTraceInfo after the first, the previous ClientData value is
passed in as the last argument. Tcl_VarTraceInfo finds the trace with this value, then
returns the ClientData for the next trace. When it reaches the last trace it returns NULL.

301

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 33
Hash Tables

A hash table is a collection ofentries, where each entry consists of akey and avalue. No
two entries have the same key. Given a key, a hash table can very quickly locate its entry
and hence the associated value. Tcl contains a general-purpose hash table package that it
uses in several places internally. For example, all of the commands in an interpreter are
stored in a hash table where the key for each entry is a command name and the value is a
pointer to information about the command. All of the global variables are stored in another
hash table where the key for each entry is the name of a variable and the value is a pointer
to information about the variable.

Tcl exports its hash table facilities through a set of library procedures so that applica-
tions can use them too (see Table 33.1 for a summary). The most common use for hash
tables is to associate names with objects. In order for an application to implement a new
kind of object it must give the objects textual names for use in Tcl commands. When a
command procedure receives an object name as an argument it must locate the C data
structure for the object. Typically there will be one hash table for each type of object,
where the key for an entry is an object name and the value is a pointer to the C data struc-
ture that represents the object. When a command procedure needs to find an object it looks
up its name in the hash table. If there is no entry for the name then the command procedure
returns an error.

For the examples in this chapter I’ll use a hypothetical application that implements
objects called “gizmos”. Each gizmo is represented internally with a structure declared
like this:

typedef struct Gizmo {
... fields of gizmo object ...

} Gizmo;

FIGURE 33

TABLE 33

302 Hash Tables

DRAFT (4/16/93): Distribution Restricted

The application uses names like “gizmo42” to refer to gizmos in Tcl commands, where
each gizmo has a different number at the end of its name. The application follows the
action-oriented approach described in Section 27.3 by providing a collection of Tcl com-
mands to manipulate the objects, such as gcreate to create a new gizmo, gdelete to
delete an existing gizmo, gsearch to find gizmos with certain characteristics, and so on.

Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)
Creates a new hash table and stores information about the table at
*tablePtr. KeyType is either TCL_STRING_KEYS,
TCL_ONE_WORD_KEYS, or an integer greater than 1.

Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)
Deletes all the entries in the hash table and frees up related storage.

Tcl_HashEntry *Tcl_CreateHashEntry(Tcl_HashTable *tablePtr,
char *key,

int *newPtr)
Returns a pointer to the entry in tablePtr whose key is key, creating a
new entry if needed. *NewPtr is set to 1 if a new entry was created or 0 if
the entry already existed.

Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char
*key)
Returns a pointer to the entry in tablePtr whose key is key, or NULL if
no such entry exists.

Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)
Deletes an entry from its hash table.

ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)
Returns the value associated with a hash table entry.

Tcl_SetHashValue(Tcl_HashEntry *entryPtr, ClientData value)
Sets the value associated with a hash table entry.

char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)
Returns the key associated with a hash table entry.

Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)

Starts a search through all the elements of a hash table. Stores information
about the search at *searchPtr and returns the hash table’s first entry or
NULL if it has no entries.

Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)
Returns the next entry in the search identified by searchPtr or NULL if all
entries in the table have been returned.

char *Tcl_HashStats(Tcl_HashTable *tablePtr)
Returns a string giving usage statistics for tablePtr. The string is dynam-
ically allocated and must be freed by the caller.

33.1 Keys and values 303

DRAFT (4/16/93): Distribution Restricted

33.1 Keys and values

Tcl hash tables support three different kinds of keys. All of the entries in a single hash
table must use the same kind of key, but different tables may use different kinds. The most
common form of key is a string. In this case each key is a NULL-terminated string of arbi-
trary length, such as “gizmo18” or “Waste not want not”. Different entries in a
table may have keys of different length. The gizmo implementation uses strings as keys.

The second form of key is a one-word value. In this case each key may be any value
that fits in a single word, such as an integer. One-word keys are passed into Tcl using val-
ues of type “char *” so the keys are limited to the size of a character pointer.

The last form of key is an array. In this case each key is an array of integers (C int
type). All keys in the table must be the same size.

The values for hash table entries are items of type ClientData, which are large
enough to hold either an integer or a pointer. In most applications, such as the gizmo
example, hash table values are pointers to records for objects. These pointers are cast into
ClientData items when storing them in hash table entries, and they are cast back from
ClientData to object pointers when retrieved from the hash table.

33.2 Creating and deleting hash tables

Each hash table is represented by a C structure of type Tcl_HashTable. Space for this
structure is allocated by the client, not by Tcl; typically these structures are global vari-
ables or elements of other structures. When calling hash table procedures you pass in a
pointer to a Tcl_HashTable structure as a token for the hash table. You should never
use or modify any of the fields of a Tcl_HashTable directly. Use the Tcl library proce-
dures and macros for this.

Here is how a hash table might be created for the gizmo application:

Tcl_HashTable gizmoTable;
...
Tcl_InitHashTable(&gizmoTable, TCL_STRING_KEYS);

The first argument to Tcl_InitHashTable is a Tcl_HashTable pointer and the
second argument is an integer that specifies the sort of keys that will be used for the table.
TCL_STRING_KEYS means that strings will be used in the table;
TCL_ONE_WORD_VALUES specifies one-word keys; and an integer value greater than
one means that keys are arrays with the given number of int’s in each array.
Tcl_InitHashTable ignores the current contents of the table it is passed and re-ini-
tializes the structure to refer to an empty hash table with keys as specified.

Tcl_DeleteHashTable removes all the entries from a hash table and frees up
any memory that was allocated for the table (except space for the Tcl_HashTable

304 Hash Tables

DRAFT (4/16/93): Distribution Restricted

structure itself, which is the property of the client). For example, the following statement
could be used to delete the hash table initialized above:

Tcl_DeleteHashTable(&gizmoTable);

33.3 Creating entries

The procedure Tcl_CreateHashEntry creates an entry with a given key and
Tcl_SetHashValue sets the value associated with the entry. For example, the code
below might be used to implement the gcreate command, which makes a new gizmo
object:

int GcreateCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

static int id = 1;
int new;
Tcl_HashEntry *entryPtr;
Gizmo *gizmoPtr;
... check argc, etc ...
do {

sprintf(interp->result, "gizmo%d", id);
id++;
entryPtr = Tcl_CreateHashEntry(&gizmoTable,

interp->result, &new);
} while (!new);
gizmoPtr = (Gizmo *) malloc(sizeof(Gizmo));
Tcl_SetHashValue(entryPtr, gizmoPtr);
... initialize *gizmoPtr, etc ...
return TCL_OK;

}

This code creates a name for the object by concatenating “gizmo” with the value of the
static variable id. It stores the name in interp->result so that the command’s result
will be the name of the new object. GcreateCmd then increments id so that each new
object will have a unique name. Tcl_CreateHashEntry is called to create a new
entry with a key equal to the object’s name; it returns a token for the entry. Under normal
conditions there will not already exist an entry with the given key, in which case
Tcl_CreateHashEntry sets new to 1 to indicate that it created a new entry. However,
it is possible for Tcl_CreateHashEntry to be called with a key that already exists in
the table. In GcreateCmd this can only happen if a very large number of objects are cre-
ated, so that id wraps around to zero again. If this happens then Tcl_CreateHashEn-
try sets new to 0; GcreateCmd will try again with the next larger id until it eventually
finds a name that isn’t already in use.

33.4 Finding existing entries 305

DRAFT (4/16/93): Distribution Restricted

After creating the hash table entry GcreateCmd allocates memory for the object’s
record and invokes Tcl_SetHashValue to store the record address as the value of the
hash table entry. Tcl_SetHashValue is actually a macro, not a procedure; its first
argument is a token for a hash table entry and its second argument, the new value for the
entry, can be anything that fits in the space of a ClientData value. After setting the
value of the hash table entry GcreateCmd initializes the new object’s record.

Note: Tcl’s hash tables restructure themselves as you add entries. A table won’t use much
memory for the hash buckets when it has only a small number of entries, but it will
increase the size of the bucket array as the number of entries increases. Tcl’s hash tables
should operate efficiently even with very large numbers of entries.

33.4 Finding existing entries

The procedure Tcl_FindHashEntry locates an existing entry in a hash table. It is sim-
ilar to Tcl_CreateHashEntry except that it won’t create a new entry if the key
doesn’t already exist in the hash table. Tcl_FindHashEntry is typically used to find
an object given its name. For example, the gizmo implementation might contain a utility
procedure called GetGizmo, which is something like Tcl_GetInt except that it trans-
lates its string argument to a Gizmo pointer instead of an integer:

Gizmo *GetGizmo(Tcl_Interp *interp, char *string) {
Tcl_HashEntry *entryPtr;
entryPtr = Tcl_FindHashEntry(&gizmoTable, string);
if (entryPtr == NULL) {

Tcl_AppendResult(interp, "no gizmo named \",
string, "\", (char *) NULL);

return TCL_ERROR;
}
return (Gizmo *) Tcl_GetHashValue(entryPtr);

}

GetGizmo looks up a gizmo name in the gizmo hash table. If the name exists then Get-
Gizmo extracts the value from the entry using the macro Tcl_GetHashValue, con-
verts it to a Gizmo pointer, and returns it. If the name doesn’t exist then GetGizmo
stores an error message in interp->result and returns NULL.

GetGizmo can be invoked from any command procedure that needs to look up a
gizmo object. For example, suppose there is a command gtwist that performs a “twist”
operation on gizmos, and that it takes a gizmo name as its first argument. The command
might be implemented like this:

int GtwistCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

Gizmo *gizmoPtr;
... check argc, etc ...

306 Hash Tables

DRAFT (4/16/93): Distribution Restricted

gizmoPtr = GetGizmo(interp, argv[1]);
if (gizmoPtr == NULL) {

return TCL_ERROR;
}
... perform twist operation ...

}

33.5 Searching

Tcl provides two procedures that you can use to search through all of the entries in a hash
table. Tcl_FirstHashEntry starts a search and returns the first entry, and Tcl_N-
extHashEntry returns successive entries until the search is complete. For example,
suppose that there is a gsearch command that searches through all existing gizmos and
returns a list of the names of the gizmos that meet a certain set of criteria. This command
might be implemented as follows:

int GsearchCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

Tcl_HashEntry *entryPtr;
Tcl_HashSearch search;
Gizmo *gizmoPtr;
... process arguments to choose search criteria ...
for (entryPtr = Tcl_FirstHashEntry(&gizmoTable,

&search); entryPtr != NULL;
entryPtr = Tcl_NextHashEntry(&search)) {

gizmoPtr = (Gizmo *) Tcl_GetHashValue(entryPtr);
if (...object satisfies search criteria...) {

Tcl_AppendElement(interp,
Tcl_GetHashKey(entryPtr));

}
}
return TCL_OK;

}

A structure of type Tcl_HashSearch is used to keep track of the search.
Tcl_FirstHashEntry initializes this structure and Tcl_NextHashEntry uses the
information in the structure to step through successive entries in the table. It’s possible to
have multiple searches underway simultaneously on the same hash table by using a differ-
ent Tcl_HashSearch structure for each search. Tcl_FirstHashEntry returns a
token for the first entry in the table (or NULL if the table is empty) and Tcl_NextHash-
Entry returns pointers to successive entries, eventually returning NULL when the end of
the table is reached. For each entry GsearchCmd extracts the value from the entry, con-
verts it to a Gizmo pointer, and sees if that object meets the criteria specified in the com-
mand’s arguments. If so, then GsearchCmd uses the Tcl_GetHashKey macro to get

33.6 Deleting entries 307

DRAFT (4/16/93): Distribution Restricted

the name of the object (i.e. the entry’s key) and invokes Tcl_AppendElement to
append the name to the interpreter’s result as a list element.

Note: It is not safe to modify the structure of a hash table during a search. If you create or delete
entries then you should terminate any searches in progress.

33.6 Deleting entries

The procedure Tcl_DeleteHashEntry will delete an entry from a hash table. For
example, the following procedure uses Tcl_DeleteHashEntry to implement a gde-
lete command, which takes any number of arguments and deletes the gizmo objects they
name:

int GdeleteCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

Tcl_HashEntry *entryPtr;
Gizmo *gizmoPtr;
int i;
for (i = 1; i < argc; i++) {

entryPtr = Tcl_FindHashEntry(&gizmoTable,
argv[i]);

if (entryPtr == NULL) {
continue;

}
gizmoPtr = (Gizmo *) Tcl_HashGetValue(entryPtr);
Tcl_DeleteHashEntry(entryPtr);
... clean up *gizmoPtr ...
free((char *) gizmoPtr);

}
return TCL_OK;

}

GdeleteCmd checks each of its arguments to see if it is the name of a gizmo object. If
not, then the argument is ignored. Otherwise GdeleteCmd extracts a gizmo pointer from
the hash table entry and then calls Tcl_DeleteHashEntry to remove the entry from
the hash table. Then it performs internal cleanup on the gizmo object if needed and frees
the object’s record.

33.7 Statistics

The procedure Tcl_HashStats returns a string containing various statistics about the
structure of a hash table. For example, it might be used to implement a gstat command
for gizmos:

308 Hash Tables

DRAFT (4/16/93): Distribution Restricted

int GstatCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

if (argc != 1) {
interp->result = "wrong # args";
return TCL_ERROR;

}
interp->result = Tcl_HashStats(&gizmoTable);
interp->freeProc = free;
return TCL_OK;

}

The string returned by Tcl_HashStats is dynamically allocated and must be passed to
free; GstatCmd uses this string as the command’s result, and then sets
interp->freeProc so that Tcl will free the string.

The string returned by Tcl_HashStats contains information like the following:

1416 entries in table, 1024 buckets
number of buckets with 0 entries: 60
number of buckets with 1 entries: 591
number of buckets with 2 entries: 302
number of buckets with 3 entries: 67
number of buckets with 4 entries: 5
number of buckets with 5 entries: 0
number of buckets with 6 entries: 0
number of buckets with 7 entries: 0
number of buckets with 8 entries: 0
number of buckets with 9 entries: 0
number of buckets with more than 10 entries: 0
average search distance for entry: 1.4

You can use this information to see how efficiently the entries are stored in the hash table.
For example, the last line indicates the average number of entries that Tcl will have to
check during hash table lookups, assuming that all entries are accessed with equal proba-
bility.

309

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 34
String Utilities

This chapter describes Tcl’s library procedures for manipulating strings, including a
dynamic string mechanism that allows you to build up arbitrarily long strings, a procedure
for testing whether a command is complete, and a procedure for doing simple string
matching. Table 34.1 summarizes these procedures.

Note: None of the dynamic string facilities are available in versions of Tcl earlier than 7.0.

34.1 Dynamic strings

A dynamic string is a string that can be appended to without bound. As you append infor-
mation to a dynamic string, Tcl automatically grows the memory area allocated for it. If
the string is short then Tcl avoids dynamic memory allocation altogether by using a small
static buffer to hold the string. Tcl provides five procedures for manipulating dynamic
strings:

Tcl_DStringInit creates a new empty string;

Tcl_DStringAppend adds characters to a dynamic string;

Tcl_DStringAppendElement adds a new list element to a dynamic string;

Tcl_DStringFree releases any storage allocated for a dynamic string and reinitial-
izes the string;

andTcl_DStringResult moves the value of a dynamic string to the result string
for an interpreter and reinitializes the dynamic string.

FIGURE 34

TABLE 34

310 String Utilities

DRAFT (4/16/93): Distribution Restricted

The code below uses all of these procedures to implement a map command, which
takes a list and generates a new list by applying some operation to each element of the
original list. Map takes two arguments: a list and a Tcl command. For each element in the
list, it executes the given command with the list element appended as an additional argu-
ment. It takes the results of all the commands and generates a new list out of them, and
then returns this list as its result. Here are some exmples of how you might use the map
command:

proc inc x {expr $x+1}
map {4 18 16 19 -7} inc

5 19 17 20 -6

proc addz x {return "$x z"}
map {a b {a b c}} addz

{a z} {b z} {a b c z}

Here is the command procedure that implements map:

int MapCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Tcl_DStringInit(Tcl_DString *dsPtr)
Initializes *dsPtr to an empty string (previous contents of *dsPtr are
discarded without cleanup).

char *Tcl_DStringAppend(Tcl_DString *dsPtr, char *string, int
length)
Appends length bytes from string to dsPtr’s value and returns new
value of dsPtr. If length is less than zero, appends all of string up to
terminating NULL character.

char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, char *string)
Converts string to proper list element and appends to dsPtr’s value
(with separator space if needed). Returns new value of dsPtr.

Tcl_DStringFree(Tcl_DString *dsPtr)
Frees up any memory allocated for dsPtr and reinitializes *dsPtr to an
empty string.

Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)
Moves the value of dsPtr to interp->result and reinitializes dsP-
tr’s value to an empty string.

int Tcl_CommandComplete(char *cmd)
Returns 1 if cmd holds one or more complete commands, 0 if the last com-
mand in cmd is incomplete due to open braces etc.

int Tcl_StringMatch(char *string, char *pattern)
Returns 1 if string matches pattern using glob-style rules for pattern
matching, 0 otherwise.

34.1 Dynamic strings 311

DRAFT (4/16/93): Distribution Restricted

Tcl_DString command, newList;
int listArgc, i, result;
char **listArgv;
if (argc != 3) {

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,

&listArgv) != TCL_OK) {
return TCL_ERROR;

}
Tcl_DStringInit(&newList);
Tcl_DStringInit(&command);
for (i = 0; i < listArgc; i++) {

Tcl_DStringAppend(&command, argv[2], -1);
Tcl_DStringAppendElement(&command,

listArgv[i]);
result = Tcl_Eval(interp, command.string);
Tcl_DStringFree(&command);
if (result != TCL_OK) {

Tcl_DStringFree(&newList);
free((char *) listArgv);
return result;

}
Tcl_DStringAppendElement(&newList,

interp->result);
}
Tcl_DStringResult(interp, &newList);
free((char *) listArgv);
return TCL_OK;

}

MapCmd uses two dynamic strings. One holds the result list and the other holds the com-
mand to execute in each step. The first dynamic string is needed because the length of the
command is unpredictable, and the second one is needed to store the result list as it builds
up (this information can’t be placed immediately in interp->result because the
interpreter’s result will be overwritten by the command that’s evaluated to process the next
list element). Each dynamic string is represented by a structure of type Tcl_DString.
The structure holds information about the string such as a pointer to its current value, a
small array to use for small strings, and a length. The only field that you should ever
access is the string field, which is a pointer to the current value. Tcl doesn’t allocate
Tcl_DString structures; it’s up to you to allocate the structure (e.g. as a local variable)
and pass its address to the dynamic string library procedures.

After checking its argument count, extracting all of the elements from the initial list,
and initializing its dynamic strings, MapCmd enters a loop to process the elements of the

312 String Utilities

DRAFT (4/16/93): Distribution Restricted

list. For each element it first creates the command to execute for that element. It does this
by calling Tcl_DStringAppend to append the part of the command provided in
argv[2], then it calls Tcl_DStringAppendElement to append the list element as
an additional argument. These procedures are similar in that both add new information to
the dynamic string. However, Tcl_DStringAppend adds the information as raw text
whereas Tcl_DStringAppendElement converts its string argument to a proper list
element and adds that list element to the dynamic string (with a separator space, if
needed). It’s important to use Tcl_DStringAppendElement for the list element so
that it becomes a single word of the Tcl command being formed. If Tcl_DStringAp-
pend were used instead and the element were “a b c” as in the example on page 310,
then the command passed to Tcl_Eval would be “addz a b c” , which would result
in an error (too many arguments to the addz procedure). When Tcl_DStringAppen-
dElement is used the command is “addz {a b c}”, which parses correctly.

Once MapCmd has created the command to execute for an element, it invokes
Tcl_Eval to evaluate the command. The Tcl_DStringFree call frees up any mem-
ory that was allocated for the command string and resets the dynamic string to an empty
value for use in the next command. If the command returned an error then MapCmd
returns that same error; otherwise it uses Tcl_DStringAppendElement to add the
result of the command to the result list as a new list element.

MapCmd calls Tcl_DStringResult after all of the list elements have been pro-
cessed. This transfers the value of the string to the interpreter’s result in an efficient way
(e.g. if the dynamic string uses dynamically allocated memory then Tcl_DStringRe-
sult just copies a pointer to the result to interp->result rather than allocating new
memory and copying the string).

Before returning, MapCmd must be sure to free up any memory allocated for the
dynamic strings. It turns out that this has already been done by Tcl_DStringFree for
command and by Tcl_DStringResult for newList.

34.2 Command completeness

When an application is reading commands typed interactively, it’s important to wait until a
complete command has been entered before evaluating it. For example, suppose an appli-
cation is reading commands from standard input and the user types the following three
lines:

foreach i {1 2 3 4 5} {
puts "$i*$i is [expr $i*$i]"

}

If the application reads each line separately and passes it to Tcl_Eval, a “missing
close-brace” error will be generated by the first line. Instead, the application should
collect input until all the commands read are complete (e.g. there are no unmatched braces

34.3 String matching 313

DRAFT (4/16/93): Distribution Restricted

or quotes) then execute all of the input as a single script. The procedure Tcl_Command-
Complete makes this possible. It takes a string as argument and returns 1 if the string
contains syntactically complete commands, 0 if the last command isn’t yet complete.

The C procedure below uses dynamic strings and Tcl_CommandComplete to read
and evaluate a command typed on standard input. It collects input until all the commands
read are complete, then it evaluates the command(s) and returns the completion code from
the evaluation. It uses Tcl_RecordAndEval to evaluate the command so that the com-
mand is recorded on the history list.

int DoOneCmd(Tcl_Interp *interp) {
char line[200];
Tcl_DString cmd;
int result;
Tcl_DStringInit(&cmd);
while (1) {

if (fgets(line, 200, stdin) == NULL) {
break;

}
Tcl_DStringAppend(&cmd, line, -1);
if (Tcl_CommandComplete(cmd.string)) {

break;
}

}
result = Tcl_RecordAndEval(interp, cmd.string, 0);
Tcl_DStringFree(&cmd);
return result;

}

In the example of the previous page DoOneCmd will collect all three lines before evaluat-
ing them. If an end-of-file occurs fgets will return NULL and DoOneCmd will evaluate
the command even if it isn’t complete yet.

34.3 String matching

The procedure Tcl_StringMatch provides the same functionality as the “string
match” Tcl command. Given a string and a pattern, it returns 1 if the string matches the
pattern using glob-style matching and 0 otherwise. For example, here is a command pro-
cedure that uses Tcl_StringMatch to implement lsearch. It returns the index of the
first element in a list that matches a pattern, or -1 if no element matches:

int LsearchCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {

int listArgc, i, result;
char **listArgv;
if (argc != 3) {

314 String Utilities

DRAFT (4/16/93): Distribution Restricted

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,

&listArgv) != TCL_OK) {
return TCL_ERROR;

}
result = -1;
for (i = 0; i < listArgc; i++) {

if (Tcl_StringMatch(listArgv[i], argv[2])) {
result = i;
break;

}
}
sprintf(interp->result, "%d", result);
free((char *) listArgv);
return TCL_OK;

}

315

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 35
POSIX Utilities

This chapter describes several utilities that you may find useful if you use POSIX system
calls in your C code. The procedures can be used to expand “~” notation in file names, to
generate messages for POSIX errors and signals, and to manage sub-processes. See Table
35.1 for a summary of the procedure.

35.1 Tilde expansion

Tcl and Tk allow you to use~ notation when specifying file names, and if you write new
commands that manipulate files then you should support tildes also. For example, the
command

open ~ouster/.login

opens the file named.login in the home directory of userouster, and

open ~/.login

opens a file named.login in the home directory of the current user (as given by the
HOME environment variable). Unfortunately, tildes are not supported by the POSIX sys-
tem calls that actually open files. For example, in the firstopen command above the name
actually presented to theopen system call must be something like

/users/ouster/.login

where~ouster has been replaced bythe home directory forouster. Tcl_TildeS-
ubst is the procedure that carries out this substitution. It is used internally by Tcl and Tk

FIGURE 35

TABLE 35

316 POSIX Utilities

DRAFT (4/16/93): Distribution Restricted

to process file names before using them in system calls, and you may find it useful if you
write C code that deals with POSIX files.

For example, the implementation of the open command contains code something
like the following:

int fd;
Tcl_DString buffer;
char *fullName;
...

char *Tcl_TildeSubst(Tcl_Interp *interp, char *name,
Tcl_DString *resultPtr)

If name starts with ~, returns a new name with the ~ and following charac-
ters replaced with the corresponding home directory name. If name doesn’t
start with ~, returns name. Uses *resultPtr if needed to hold new name
(caller need not initialize *resultPtr, but must free it by calling Tcl_D-
StringFree). If an error occurs, returns NULL and leaves an error mes-
sage in interp->result.

char *Tcl_PosixError(Tcl_Interp *interp)
Sets the errorCode variable in interp based on the current value of
errno, and returns a string identifying the error.

char *Tcl_ErrnoId(void)
Returns a symbolic name corresponding to the current value of errno, such
as ENOENT.

char *Tcl_SignalId(int sig)
Returns the symbolic name for sig, such as SIGINT.

char *Tcl_SignalMsg(int sig)
Returns a human-readable message describing signal sig.

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc, char
*argv[],

int **pidPtr, int *inPipePtr, int *outPipePtr, int *errFi-
lePtr)
Creates a process pipeline, returns a count of the number of processes cre-
ated, and stores at *pidPtr the address of a malloc-ed array of process
identifiers. If an error occurs, returns -1 and leaves an error message in
interp->result. InPipePtr, outPipePtr, and errFilePtr are
used to control default I/O redirection (see text for details).

Tcl_DetachPids(int numPids, int *pidPtr)
Passes responsibility for numPids at *pidPtr to Tcl: Tcl will allow them
to run in backround and reap them in some future call to Tcl_ReapDe-
tachedProcs.

Tcl_ReapDetachedProcs(void)
Checks to see if any detached processes have exited; if so, cleans up their
state.

35.2 Generating messages 317

DRAFT (4/16/93): Distribution Restricted

fullName = Tcl_TildeSubst(interp, argv[1], &buffer);
if (fullName == NULL) {

return TCL_ERROR;
}
fd = open(fullName, ...);
Tcl_DStringFree(fullName);
...

Tcl_TildeSubst takes as arguments an interpreter, a file name that may start with a
tilde, and a dynamic string. It returns a new file name, which is either the original name (if
it didn’t start with ~), a new tilde-expanded name, or NULL if an error occurred; in the last
case an error message is left in the interpreter’s result.

If Tcl_TildeSubst has to generate a new name, it uses the dynamic string given
by its final argument to store the name. When Tcl_TildeSubst is called the dynamic
string should either be uninitialized or empty. Tcl_TildeSubst initializes it and then
uses it for the new name if needed. Once the caller has finished using the new file name it
must invoke Tcl_DStringFree to release any memory that was allocated for the
dynamic string.

35.2 Generating messages

When an error or signal occurs in the C code of a Tcl application, the application should
report the error or signal back to the Tcl script that triggered it, usually as a Tcl error. To do
this, information about the error or signal must be converted from the binary form used in
C to a string form for use in Tcl scripts. Tcl provides four procedures to do this:
Tcl_PosixError , Tcl_ErronId , Tcl_SignalId , and Tcl_SignalMsg .

Tcl_PosixError provides a simple “all in one” mechanism for reporting errors in
system calls. Tcl_PosixError examines the C variable errno to determine what
kind of error occurred, then it calls Tcl_SetErrorCode to set the errorCode vari-
able appropriately and it returns a human-readable string suitable for use in an error mes-
sage. For example, consider the following fragment of code, which might be part of a
command procedure:

FILE *f;
...
f = fopen("prolog.ps", "r");
if (f == NULL) {

char *msg = Tcl_PosixError(interp);
Tcl_AppendResult(interp,

"couldn’t open prolog.ps: ", msg,
(char *) NULL);

return TCL_ERROR;
}

318 POSIX Utilities

DRAFT (4/16/93): Distribution Restricted

If the file doesn’t exist or isn’t readable then an error will occur when fopen invokes a
system call to open the file. An integer code will be stored in the errno variable to iden-
tify the error and fopen will return a null pointer. The above code detects such errors and
invokes Tcl_PosixError . If the file didn’t exist then Tcl_PosixError will set
errorCode to

POSIX ENOENT {no such f ile or directory}

and return the string “no such f ile or directory ”. The code above incorporates
Tcl_PosixError ’s return value into its own error message, which it stores in
interp->result . In the case of an non-existent file, the code above will return
“couldn’t open prolog.ps: no such f ile or directory ” as its error
message.

Tcl_ErrnoId takes no arguments and returns the official POSIX name for the error
indicated by errno . The names are the symbolic ones defined in the header file
errno.h . For example, if errno ’s value is ENOENT then Tcl_ErrnoId will return
the string “ENOENT”. The return value from Tcl_ErrnoId is the same as the value that
Tcl_PosixError will store in the second element of errorCode .

Tcl_SignalId and Tcl_SignalMsg each take a POSIX signal number as argu-
ment, and each returns a string describing the signal. Tcl_SignalId returns the official
POSIX name for the signal as defined in signal.h , and Tcl_SignalMsg returns a
human-readable message describing the signal. For example,

Tcl_SignalId(SIGILL)

returns the string “SIGILL ”, and

Tcl_SignalMsg(SIGILL)

returns “illegal instruction ”.

35.3 Creating subprocesses

Tcl_CreatePipeline is the procedure that does most of the work of creating
subprocesses for exec and open . It creates one or more subprocesses in a pipeline con-
figuration. It has the following arguments and result:

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc,
char *argv[], int **pidPtr, int *inPipePtr,
int *outPipePtr, int *errFilePtr)

The argc and argv arguments describe the commands for the subprocesses in the same
form they would be specified to exec . Each string in argv becomes one word of one
command, except for special strings like “>” and “| ” that are used for I/O redirection and
separators between commands. Tcl_CreatePipeline normally returns a count of the
number of subprocesses created, and it stores at *pidPtr a pointer to an array containing
the process identifiers for the new processes. The array is dynamically allocated and must

35.4 Background processes 319

DRAFT (4/16/93): Distribution Restricted

be freed by the caller by passing it to free. If an error occurred while spawning the sub-
processes (e.g. argc and argv specified that output should be redirected to a file but the
file couldn’t be opened) then Tcl_CreatePipeline returns -1 and leaves an error
message in interp->result.

The last three arguments to Tcl_CreatePipeline are used to control I/O to and
from the pipeline if argv and argc don’t specify I/O redirection. If these arguments are
NULL then the first process in the pipeline will takes its standard input from the standard
input of the parent, the last process will write its standard output to the standard output of
the parent, and all of the processes will use the parent’s standard error channel for their
error message. If inPipePtr is not NULL then it points to an integer; Tcl_Cre-
atePipeline will create a pipe, connect its output to the standard input of the first sub-
process, and store a writable file descriptor for its input at *inPipePtr. If
outPipePtr is not NULL then standard output goes to a pipe and a read descriptor for
the pipe is stored at *outPipePtr. If errFilePtr is not NULL then Tcl_Cre-
atePipeline creates a temporary file and connects the standard error files for all of the
subprocesses to that file; a readable descriptor for the file will be stored at *errFi-
lePtr. Tcl_CreatePipeline removes the file before it returns, so the file will only
exist as long as it is open.

If argv specifies input or output redirection then this overrides the requests made in
the arguments to Tcl_CreatePipeline. For example, if argv redirects standard
input then no pipe is created for standard input; if inPipePtr is not NULL then -1 is
stored at *inPipePtr to indicate that standard input was redirected. If argv redirects
standard output then no pipe is created for it; if outPipePtr is not NULL then -1 is
stored at *outPipePtr. If argv redirects some or all of the standard error output and
errFilePtr is not NULL, the file will still be created and a descriptor will be returned,
even though it’s possible that no messages will actually appear in the file.

35.4 Background processes

Tcl_DetachPids and Tcl_ReapDetachedProcs are used to keep track of
processes executing in the background. If an application creates a subprocess and aban-
dons it (i.e. the parent never invokes a system call to wait for the child to exit), then the
child executes in background and when it exits it becomes a “zombie”. It remains a zom-
bie until its parent officially waits for it or until the parent exits. Zombie processes occupy
space in the system’s process table, so if you create enough of them you will overflow the
process table and make it impossible for anyone to create more processes. To keep this
from happening, you must invoke a system call such as waitpid, which will return the
exit status of the zombie process. Once the status has been returned the zombie relin-
quishes its slot in the process table.

In order to prevent zombies from overflowing the process table you should pass the
process identifiers for background processes to Tcl_DetachPids:

320 POSIX Utilities

DRAFT (4/16/93): Distribution Restricted

Tcl_DetachPids(int numPids, int *pidPtr)

The pidPtr argument points to an array of process identifiers and numPids gives the
size of the array. Each of these processes now becomes the property of Tcl and the caller
should not refer to them again. Tcl will assume responsibility for waiting for the processes
after they exit.

In order for Tcl to clean up background processes you may need to call Tcl_Reap-
DetachedProcs from time to time. Tcl_ReapDetachedProcs invokes the
waitpid kernel call on each detached process so that its state can be cleaned up if it has
exited. If some of the detached processes are still executing then Tcl_ReapDetached-
Procs doesn’t actually wait for them to exit; it only cleans up the processes that have
already exited. Tcl automatically invokes Tcl_ReapDetachedProcs each time
Tcl_CreatePipeline is invoked, so under normal circumstances you won’t ever
need to invoke it. However, if you create processes without calling Tcl_CreatePipe-
line (e.g. by invoking the fork system call) and subsequently pass the processes to
Tcl_DetachPids, then you should also invoke Tcl_ReapDetachedProcs from
time to time. For example, a good place to call Tcl_ReapDetachedProcs is in the
code that creates new subprocesses.

