Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

27.1
27.2
27.3
27.4
27.5

28.1
28.2
28.3
28.4

20.1
29.2
29.3
29.4
29.5
29.6

30.1
30.2
30.3

31.1
31.2
31.3

Philosophy 257

C vs. Tl: primitives 257

Object names 259

Commands: action-oriented vs. object-orient&s0
Application prefixes 261

Representing information262

Interpreters and Script Evaluatior263
Interpreters 263

A simple Tcl application 263

Other evaluation procedure66

Deleting interpreters 266

Creating New Tcl Commands269
Command procedures269

Registering commands271

The result protocol 272

Procedures for managing the resut73
ClientData and deletion callback®75

Deleting commands 278

Parsing 279
Numbers and boolean279
Expression evaluation282
Manipulating lists 283

Exceptions 285
Completion codes. 285
Augmenting the stack trace in errorinf@88
Setting errorCode 290

DRAFT (4/16/93): Distribution Restricted

Chapter 32 Accessing Tcl Variables 291
32.1 Naming variables 291
32.2 Setting variable values 293
32.3 Reading variables 295
32.4 Unsetting variables 296
32,5 Setting and unsetting variable traces 296
32.6 Tracecalbacks 297
32.7 Whole-array traces 299
32.8 Multipletraces 299
32.9 Unset callbacks 299
32.10 Non-existent variables 300
3211 Querying trace information 300

Chapter 33 Hash Tables 301
33.1 Keysandvaues 303
33.2 Creating and deleting hash tables 303
33.3 Creating entries 304
33.4 Finding existing entries 305
33.5 Searching 306
33.6 Deleting entries 307
33.7 Statistics 307

Chapter 34 String Utilities 309
34.1 Dynamic strings 309
34.2 Command completeness 312
34.3 String matching 313

Chapter 35 POSIX Utilities 315
35.1 Tildeexpansion 315
35.2 Generating messages 317

DRAFT (4/16/93): Distribution Restricted

35.3 Creating subprocesses 318
35.4 Background processes 319

DRAFT (4/16/93): Distribution Restricted

DRAFT (4/16/93): Distribution Restricted

Part |11:

Writing Tcl Applications
In C

256

DRAFT (4/16/93): Distribution Restricted

Chapter 27
Philosophy

Note:

27.1

This part of the book describes how to write C applications based.dgifice the @l
interpreter is implemented as a C library package, it can be linked into any C or C++ pro-
gram. The enclosing application invokes procedures in¢hébfary to create interpret-

ers, evaluated scripts, and extend the built-in command set with new application-
specific commands.cTalso provides a number of utility procedures for use in implement-
ing new commands; these procedures can be used to acteagdbles, parse gu-

ments, manipulatecT lists, evaluate dl expressions, and so on. This chapter discusses
several high-level issues to consider when designirgy application, such as what new

Tcl commands to implement, how to name objects, and what form to use for command
results. The following chapters present the specific C interfaces provided ky the T
library.

The interfaces described in Part 111 are those that will be available in Tcl 7.0, which had

not been released at the timex this draft was prepared. Thus there may some differences
between what you read here and what you can do with your current version of Tcl. There

are almost no differences in functionality; the differences mostly have to do with the
interfaces. Be sure to consult your manual entries when you actually write C code.

C vs. Tcl: primitives

In order to make acT application as flexible and powerful as possible, you shogkt or
nize its C code as a set of neal tommands that provide a clean sepromitive opera-
tions. You need not implement every imaginable feature in C, since new features can
always be implemented later ad $cripts. The purpose of the C code is to provide basic

257

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

258

Philosophy

operations that make it easy to implement a wide variety of useful scripts. If your C code
lumps several functions together into a single command then it b@possible to write

scripts that use the functions separately and your application leméry flexible or
extensible. Instead, each command should provide a single function, and you should com-
bine them together withcT scripts. Yu'll probably find that many of your applicatisn’
essential features are implemented as scripts.

Given a choice between implementing a particular piece of functionalityds a T
script or as C code, s'generally better to implement it as a script. Scripts are usually eas-
ier to write, they can be modified dynamicaliyd you can debug them more quickly
because you donhave to recompile after each bug fix. Howetegre are three reasons
why it is sometimes better to implement a new function in C. First, you may need to
access low-level machine facilities that at@tcessible indl scripts. For example, the
Tcl built-in commands dohprovide access to network sockets, so if you want to use the
network you'll have to write C code to do it. Second, you may be concerned dbout ef
ciency For example, if you need to carry out intensive numerical calculations, or if you
need to operate on g arrays of data, you'll be able to do it morficefntly in C than in
Tcl. The third reason for implementing in C is complexityou are manipulating com-
plex data structures, or if you're writing adaramount of code, the task will probably be
more manageable in C than ial.TTcl provides very little structure; this makes it easy to
connect diferent things together but hard to managgdaromplex scripts. C provides
more structure, which is cumbersome when you're implementing small things but indis-
pensable when you're implementing big complicated things.

As an example, consider a program to manipulate weather reports. Suppose that infor-
mation about current weather is available for gdarumber of measurement stations from
one or more network sites using a well-defined network protocol, and you want to write a
Tcl application to manipulate this data. Users of your application might wish to answer
questions like:

* What is the complete weather situation at station X?
* What is the current temperature at station X?
* Which station in the country has the highest current temperature?

* At which stations is it currently raining?
You'll need to write some C code for this application in order to retrieve weather reports
over the network. What form should these new commands take?

One approach is to implement each of the above functions in C as a seglarate-T
mand. For example, you might provide a command that retrieves the weather report from
a station, formats it into prose, and prints it on standard output. Unfortunately this com-
mand can only be used for one purpose; you'd have to provide a second command for sit-
uations where you want to retrieve a report without printing it out (e.g. to find all the
station where it is raining).

Instead, I'd suggest providing just two commands in @t lar _st at i ons com-
mand that returns a list of all the stations for which weather reports are available, and a

DRAFT (4/16/93): Distribution Restricted

27.2 Object names 259

27.2

wt hr _report command that returns a complete weather report for a particular station.
These commands don’'t implement any of the above features directly, but they make it
easy to implement all of the features. For example, Tcl already hasaput s command that
can be used to print information on standard output, so the first feature (printing a weather
report for a station) can be implemented with a script that callswt hr _r epor t , formats
the report, and printsit with put s. The second feature (printing just the temperature) can
be implemented by extracing the temperature from the result of wt hr _r eport and then
printing it alone. The third and fourth features (finding the hottest station and finding all
stations where it is raining) can be implemented with scripts that invokewt hr _r epor t
for each station and extract and print relevant information. Many other features could also
be implemented, such as printing a sorted list of the ten stations with the highest tempera-
tures.

The preceding paragraph suggests that lower-level commands are better than higher-
level ones. However, if you make the commands too low level then Tcl scripts will
become unnecessarily complicated and you may |ose opportunities for efficient implemen-
tation. For example, instead of providing asingle command that retrieves aweather report,
you might provide separate Tcl commands for each step of the protocol that retrieves a
report: one command to connect to a server, one command to select a particular station,
one command to request areport for the selected station, and so on. Although this results
in more primitive commands, it is probably a mistake. The extra commands don't provide
any additional functionality and they make it more tedious to write Tcl scripts. Further-
more, suppose that network communication delays are high, so that it takes along time to
get aresponse from aweather server, but the server allows you to request reports for sev-
eral stations at once and get them all back in about the same time as asingle report. In this
situation you might want an even higher level interface, perhaps a Tcl command that takes
any number of stations as arguments and retrieves reports for all of them at once. This
would allow the C code to amortize the communication delays across several report
retrievals and it might permit a much more efficient implementation of operations such as
finding the station with the highest temperature.

To summarize, you should pick commands that are primitive enough so that all of the
application’s key functions are available individually through Tcl commands. On the other
hand, you should pick commands that are high-level enough to hide unimportant details
and capitalize on opportunities for efficient implementation.

Object names

The easiest way to think about your C codeisin terms of objects. The C codein a Tcl
application typically implements afew new kinds of objects, which are manipulated by
the application’s new Tcl commands. In the C code of your application you'll probably
refer to the objects using pointersto the C structures that represent the objects, but you
can’t use pointersin Tcl scripts. Strings of some sort will have to be used in the Tcl scripts,

DRAFT (4/16/93): Distribution Restricted

260

Philosophy

27.3

and the C code that implements your commands will have to translate from those strings
to internal pointers. For example, the objects in the weather application are weather sta-
tions; thewt hr _st at i ons command returns a list of station names, and the

wt hr _report command takes a station name as goraent.

A simple but dangerous way to name objects is to use their internal addresses. For
example, in the weather application you could name each station with a hexadecimal
string giving the internal address of the C structure for that station: the command that
returns a list of stations would return a list of hexadecimal strings, and the command to
retrieve a weather report would take one of these hexadecimal strings@meat. When
the C code receives one of these strings, it could produce a pointer by converting the string
to a binary numbet dont recommend using this approach in practice because it is hard to
verify that a hexadecimal string refers to a valid object. If a user specifies a bad address it
might cause the C code to make wild memory accesses, which could cause the application
to crash. In addition, hexadecimal strings daohvey any meaningful information to the
user

Instead, | recommend using names that can be verified and that convey meaningful
information. One simple approach is to keep a hash table in your C code that maps from a
string name to the internal pointer for the object; a name is only valid if it appears in the
hash table. ThecT library implements flexible hash tables to make it easy for you to use
this approach (see Chapter 33). If you use a hash table then you can use any strings what-
soever for names, so you might as well pick ones that convey information. For example,
Tk uses hierarchical path names likeenu. hel p for windows in order to indicate the
window’s position in the window hierarchycl uses names likiei | e3 orfi | e4 for
open files; these names doboonvey a lot of information, but they at least include the let-
ters ‘fi | e” to suggest that they're used for file access, and the number is the POSIX file
descriptor number for the open file. For the weather application I'd recommend using sta-
tion names such as the city where the station is locatei tiiy U.S. Wather Service has
well-defined names for its stations then I'd suggest using those names.

Commands: action-oriented vs. object-oriented

There are two approaches you can use when defining commands in your application,
which | callaction-oriented andobject-oriented. In the action-oriented approach there is
one command for each action that can be taken on an object, and the command takes an
object name as an@ament. The weather application is action-orientedthe _r e-
port command corresponds to an action (retrieve weather report) and it takes a weather
station name as angument. Tl's file commands are also action-oriented: there are sepa-
rate commands for opening files, reading, writing, closing, etc.

In the object-oriented approach there is one command for each object, and the name
of the command is the name of the object. When the command is invoked itgirst ar
ment specifies the operation to perform on the objecs. Wkigets work this way: if there

DRAFT (4/16/93): Distribution Restricted

27.4 Application prefixes 261

Note:

27.4

is a button widgetb then there is also a command naniedyou can invoke
“.b flash ”to flash the widget or.b invoke " to invoke its action.

The action-oriented approach is best when there are a great many objects or the
objects are unpredictable or short-lived. For example, it wouhdake sense to imple-
ment string operations using an object-oriented approach because there would have to be
one command for each string, and in practideapplications have lge numbers of
strings that are created and deleted on a command-by-command basis. The weather appli-
cation uses the action-oriented approach because there are only a few actions and and
potentially a lage number of stations. In addition, the application probably doesed to
keep around state for each station all the time; it just uses the station name to look up
weather information when requested.

The object-oriented approach works well when the number of objedtfoismjreat
(e.g. a few tens or hundreds) and the objects are well-defined and exist for at least moder-
ate amounts of time. T&'widgets fit this description. The object-oriented approach has
the advantage that it doespbllute the command name space with lots of commands for
individual actions. For example in the action-oriented approach the command “delete”
might be defined for one kind of object, thereby preventing its use for any other kind of
object. In the object-oriented approach you only have to make sure that your object names
don't conflict with existing commands or other object names. For example, Tk claims all
command names starting with “.” for its widget commands. The object-oriented approach
also makes it possible for tifent objects to implement the same action ifediht ways.
For example, ift is a text widget and is a listbox widget in Tk, theommands
“t yview0O "and"“lyview 0 " are implemented in very dérent ways even
though they produce the same logicéteff (adjust the view to make the topmost line vis-
ible at the top of the window).
Although Tis file commands arimplemented using the action-oriented aajgh, in

retrospect | wish that | had used the object-oriented fashion, since open files fit the object-
oriented model nicely

Application prefixes

If you use the action-oriented approach, | strongly recommend that you add a unique pre-
fix to each of your command names. For example, | used the pagffix “ ” for the

weather commands. This guarantees that your commandsasofiict with other com-

mands as long as your prefix is unique, and it makes it possiblede digrent applica-

tions together without name conflicts. | also recommend using prefixes fmo€edures

that you define and for global variables, again so that multiple packages can be used
together

DRAFT (4/16/93): Distribution Restricted

262

Philosophy

27.5 Representing information

Theinformation passed into and out of your Tcl commands should be formatted for
easy processing by Tcl scripts, not necessarily for maximum human readability. For exam-
ple, the command that retrieves aweather report shouldn’t return English prose describing
the weather. Instead, it should return the information in a structured form that makes it
easy to extract the different components under the control of a Tcl script. You might return
the report as alist consisting of pairs of elements, where the first element of each pairisa
keyword and the second element is a value associated with that keyword, such as:

tenp 53 hi 68 o 37 precip .02 sky part

Thisindicatesthat the current temperature at the station is 53 degrees, the high and low for
the last 24 hours were 68 and 37 degrees, .02 inches of rain hasfalen in the last 24 hours,
and the sky is partly cloudy. Or, the command might store the report in an associative
array where each keyword is used as the name of an array element and the corresponding
valueis stored in that element. Either of these approaches would make it easy to extract
components of the report. You can always reformat the information to make it more read-
ablejust before displaying it to the user.

Although machine readability is more important than human readability, you need not
gratuitoudly sacrifice readability. For example, the above list could have been encoded as

18 53 7 68 9 37 5 .02 17 4

where 18 is akeyword for current temperature, 7 for 24-hour high, and so on. Thisis
unnecessarily confusing and will not make your scripts any more efficient, since Tcl han-
dles strings at least as efficiently as numbers.

DRAFT (4/16/93): Distribution Restricted

Chapter 28
|nterpretersand Script Evaluation

28.1

This chapter describes how to create and delete interpreters and how to use them to evalu-
ate Tl scripts. Bble 28.1 summarizes the library procedures that are discussed in the
chapter

Interpreters

28.2

The central data structure manipulated by ttidiirary is a C structure of typecl _I n-

t er p. I'll refer to these structures (or pointers to themngss preters. Aimost all of the

Tcl library procedures take a pointer td@ _| nt er p structure as angument. An
interpreter embodies the execution state afladript, including commands implemented
in C, Tcl procedures, variables, and an execution stack that reflects partially-evaluated
commands andcT procedures. MostcT applications use only a single interpreter but it is
possible for a single process to manage several independent interpreters.

A simple Tcl application

The program below illustrates how to create and use an interprétea simple but com-
plete Tl application that evaluates alBcript stored in a file and prints the result or error
message, if any

#i ncl ude <stdi o. h>
#i ncl ude <tcl. h>

263

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

264

Interpreters and Script Evaluation

Tcl _Interp *Tcl _Createl nterp(void)

Tcl _Del etelnterp(Tcl _Interp *interp)

Create anew interpreter and return atoken for it.

Delete an interpreter.

i nt

i nt

i nt

i nt

i nt

Tcl _Eval (Tcl _Interp *interp, char *script)
Evaluatescri pt ini nt er p and return its completion code. The result or
error string will beini nt er p- >resul t.

Tcl _Eval File(Tcl _Interp *interp, char *fil eNanme)
Evaluate the contents of filef i | eName ini nt er p and return its comple-
tion code. The result or error string will beini nt er p- >resul t.

Tcl _d obal Eval (Tcl _Interp *interp, char *script)
Evaluatescri pt ini nt er p at global level and return its completion code.
Theresult or error string will beini nt er p->resul t.

Tcl _VarEval (Tcl _Interp *interp, char *string, char *string,

(char *) NULL)

Concatenate all of the st r i ng arguments into a single string, evaluate the
resulting script ini nt er p, and return its completion code. The result or
error string will beini nt er p->resul t.

Tcl _RecordAndEval (Tcl _Interp *interp, char *script, int
flags)
Recordsscri pt asaneventini nt er p’shistory list and evaluates it if
eval isnon-zero (TCL_NO_EVAL meansdon’t evaluate the script). Returns
acompletion code such as TCL_ OK and leaves result or error message in
interp->result.

Table 28.1. Tcl library procedures for creating and deleting interpreters and for evaluating Tcl

mai n(int argc, char *argv[]) {
Tcl _Interp *interp;
i nt code;

if (argc !'=2) {
fprintf(stderr, "Wong # argunents: ");
fprintf("should be \"% fileNane\"\n",
argv[0]);
exit(1l);
}
interp = Tcl _Createlnterp();
code = Tcl _Eval File(interp, argv[1]);
if (*interp->result = 0) {
printf("%\n", interp->result);

}
if (code !'= TCL_ OK) {

DRAFT (4/16/93): Distribution Restricted

28.2 A simple Tcl application 265

Note:

exit(1l);
}
exit(0);

If Tcl has been installed properly at your site you can copy the C code into afile named
si npl e. ¢ and compileit with the following shell command:

cc sinmple.c -ltcl -Im

Once you’ ve compiled the program you can evaluate a script filet est . t ¢l by typing
the following command to your shell:

a.out test.tcl

The codefor si npl e. c starts out with #i ncl ude statementsfor st di 0. h and
tcl. h.You'll needtoincludet cl . h inevery file that uses Tcl structures or procedures,
sinceit defines structureslike Tcl _I nt er p and declares the Tcl library procedures.

After checking to be sure that a file name was specified on the command line, the pro-
graminvokes Tcl _Cr eat el nt er p to create anew interpreter. The new interpreter will
contain all of the built-in commands described in Part | but no Tcl procedures or variables.
It will have an empty execution stack. Tcl _Cr eat el nt er p returns apointer to the
Tcl _I nt er p structure for the interpreter, which is used as atoken for the interpreter
when calling other Tcl procedures. Most of the fields of the Tcl _I nt er p structure are
hidden so that they cannot be accessed outside the Tcl library. The only accessible fields
are those that describe the result of the last script evaluation; they’ll be discussed | ater.

Next si npl e. c callsTcl _Eval Fi | e with the interpreter and the name of the
script fileasarguments. Tcl _Eval Fi | e readsthefile and evaluates its contents as a Tcl
script, just asif you had invoked the Tcl sour ce command with the file name as an argu-
ment. When Tcl _Eval Fi | e returns the execution stack for the interpreter will once
again be empty.

Tcl _Eval Fi | e returnstwo pieces of information: an integer completion code and
astring. The completion code is returned as the result of the procedure. 1t will be either
TCL_OK, which means that the script completed normally, or TCL_ ERROR, which means
that an error of some sort occurred (e.g. the script file couldn’t be read or the script aborted
with an error). The second piece of information returned by Tcl _Eval Fi | e isastring, a
pointer to which isreturned ini nt er p- >r esul t . If the completion codeis TCL_OK
theni nt er p- >r esul t pointsto the script’s result; if the completion codeis TCL_ER-
RORtheni nt er p- >r esul t pointsto a message describing the error.

Theresult string belongs to Tcl. It may or may not be dynamically allocated. You can read
it and copy it, but you should not modify it and you should not save pointersto it. Tcl may
overwrite the string or reallocate its memory during the next call to Tcl _Eval Fi | e or

any of the other procedures that evaluate scripts. Chapter 29 discusses the result string in
more detail.

DRAFT (4/16/93): Distribution Restricted

266

Interpreters and Script Evaluation

28.3

If the result string is non-empty then si npl e. c printsit, regardless of whether itis
an error message or anormal result. Then the program exits. It follows the UNIX style of
exiting with astatus of 1 if an error occurred and O if it completed successfully.

When the script file is evaluated only the built-in Tcl commands are available: no Tk
commands will be available in this application and no application-specific commands
have been defined.

Other evaluation procedures

28.4

Tcl provides three other proceduresbesides Tcl _Eval Fi | e for evaluating scripts. Each
of these procedures takes an interpreter asitsfirst argument and each returns acompletion
code and string, just like Tcl _Eval Fil e. Tcl _Eval issmilartoTcl _Eval Fil e
except that its second argument is a Tcl script rather than afile name:

code = Tcl _Eval (interp, "set a 44");
Tcl _Var Eval takesavariable number of string arguments terminated with a NULL
argument. It concatenates the strings and evaluates the result as a Tcl script. For example,
the statement below has the same effect as the one above:

code = Tcl _VarEval (interp, "set a ", "44",

(char *) NULL);
Tcl _d obal Eval issimilarto Tcl _Eval except that it evaluates the script at global
variable context (asif the execution stack were empty) even when procedures are active. It
isused in specia cases such astheupl evel command and Tk's event bindings.
If you want a script to be recorded on the Tcl history list, call Tcl _Recor dAndE-

val instead of Tcl _Eval :

char *script;

i nt code;

code = Tcl _RecordAndEval (interp, script, 0);
Tcl _Recor dAndEval isidentical to Tcl _Eval except that it records the script asa
new entry on the history list before invoking it. Tcl only records the scripts passed to
Tcl _Recor dAndEval , so you can select which onesto record. Typically you'll record
only commands that were typed interactively. The last argument to Tcl _Recor dAndE-
val isnormaly O; if you specify TCL_NO_EVAL instead, then Tcl will record the script
without actually evaluating it.

Deleting interpreters

The procedure Tcl _Del et el nt er p may be called to destroy an interpreter and al its
associated state. It isinvoked with an interpreter as argument:

DRAFT (4/16/93): Distribution Restricted

28.4 Deleting interpreters 267

Tcl _Del etelnterp(interp);

Once Tcl _Del et el nt er p returns you should never use the interpreter again. In appli-
cationslikesi npl e. ¢, which use asingle interpreter throughout their lifetime, there's
no need to delete the interpreter.

DRAFT (4/16/93): Distribution Restricted

268 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

Chapter 29
Creating New Tcl Commands

29.1

Each Tl command is represented bganmand procedure written in C. When the com-

mand is invoked during script evaluatiom) Talls its command procedure to carry out the
command. This chapter provides basic information on how to write command procedures,
how to register command procedures in an interpreter , and how to manage the interpret-
er's result string. dble 29.1 summarizes thelTibrary procedures that are discussed in

the chapter

Command procedures

The interface to a command procedure is defined bydhe CndPr oc procedure proto-
type:
typedef int Tcl_CrmdProc(CientData clientData,

Tcl _Interp *interp, int argc,

char *argv[]);
Each command procedure takes foguanents. The firstl i ent Dat a, will be dis-
cussed in Section 29.5 belovhe second, nt er p, is the interpreter in which the com-
mand was invoked. The third and fourtiyanents have the same meaning asitige
andar gv aguments to a C main prograar. gc specifies the total number of words in
the Tcl command andr gv is an array of pointers to the values of the wordkpiio-
cesses all the special characters suchasd [] before invoking command procedures,
so the values iar gc reflect any substitutions that were specified for the command. The
command name is includedam gc andar gv, andar gv[ar gc]is NULL. A command

269

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

270 Creating New Tcl Commands

Tcl _Creat eConmand(Tcl _Interp *interp, char *cndNane,
Tcl _CndProc *cnmdProc, CientData clientData,
Tcl _CndDel et eProc *del et eProc)
Defines anew command ini nt er p with name cmdNane. When the com-
mand isinvoked cmdPr oc will be called; if the command is ever deleted
then del et ePr oc will be called.
int Tcl _Del eteConmmand(Tcl _Interp *interp, char *crdName)
If cmdNane isacommand or procedureini nt er p then deletesit and
returns 0. Otherwise returns - 1.

Tcl _SetResult(Tcl _Interp *interp, char *string, Tcl _FreeProc
*freeProc)
Arrangefor st ri ng (or acopy of it) to becometheresult fori nt er p.
Fr eePr oc identifies a procedure to call to eventually free the result, or it
may be TCL_STATI C, TCL_DYNAM C, or TCL_VOLATI LE.

Tcl _AppendResul t (Tcl _Interp *interp, char *string,

char *string, ... (char *) NULL)

Appends each of thest r i ng argumentsto theresult stringini nt er p.

Tcl _AppendEl ement (Tcl _Interp *interp, char *string)
Formatsst ri ng asaTcl list element and appends it to the result string in
i nt er p, with apreceding separator space if needed.

Tcl _Reset Resul t (Tcl _Interp *interp)
Resetsi nt er p’sresult to the default empty state, freeing up any dynami-
cally-allocated memory associated with it.

Table 29.1. Tcl library procedures for creating and deleting commands and for manipulating the

procedure returnstwo valuesjust like Tcl _Eval and Tcl _Eval Fi | e. It returnsan
integer completion code asitsresult (e.g. TCL_OK or TCL_ERROR) and it leaves a result
string or error messageini nt er p->resul t.
Hereis the command procedure for anew command called eq that compares its two
arguments for equality:
int EqCnd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
if (argc !'= 3) {
interp->result = "wong # args"”;
return TCL_ERROR;

}

if (strcnp(argv[1l], argv[2]) == 0) {
interp->result = "1";

} else {
i nterp->result

}

"0";

DRAFT (4/16/93): Distribution Restricted

29.2 Registering commands 271

29.2

return TCL_COK;
}
EqCd checks to see that was called with exactly two arguments (three words, including
the command name), and if not it stores an error messageini nt er p- >r esul t and
returns TCL_ ERROR. Otherwise it comparesitstwo argument strings and storesastring in
i nterp->result toindicate whether or not they were equal; then it returns TCL_ OK
to indicate that the command completed normally.

Registering commands

In order for acommand procedure to be invoked by Tcl, you must register it by calling
Tcl _Creat eConmand. For example, EqQCnd could be registered with the following
statement:
Tcl _CreateCommand(interp, "eq", EqCnd,

(AdientData *) NULL,

(Tcl _CmdDel et eProc *) NULL);
Thefirst argument to Tcl _Cr eat eConmand identifies the interpreter in which the com-
mand will be used. The second argument specifies the name for the command and the third
argument specifies its command procedure. The fourth and fifth arguments are discussed
in Section 29.5 below; they can be specified as NULL for simple commands like this one.
Tcl _Cr eat eCommand will create anew command for i nt er p named eq; if there
already existed a command by that name then it is deleted. Whenever eq isinvoked in
i nt erp Tcl will call EQCnd to carry out its function.

After the above call to Tcl _Cr eat eConmand, eq can be used in scriptsjust like

any other command:

eq abc def
0

eq 11

1

set w.dlg

set w2 .dlg.ok
eq $w. ok $w2

1

When processing scripts, Tcl carries out all of the command-line substitutions before call-
ing the command procedure, so when EqCnd is called for the last eq command above
bothar gv[1] andar gv[2] are”. dl g. ok”.

Tcl _Cr eat eCommand isusually caled by applications during initialization to reg-
ister application-specific commands. However, new commands can also be created at any
time while an application is running. For example, the pr oc command creates a new

DRAFT (4/16/93): Distribution Restricted

272

Creating New Tcl Commands

29.3

command for each Tcl procedure that is defined, and Tk creates a widget command for
each new widget. In Section 29.5 you'll see an example where the command procedure for
one command creates a new command.

Commands created by Tcl _Cr eat eComand areindistinguishable from Tcl’s
built-in commands. Each built-in command has a command procedure with the same form
as EqCmd, and you can redefine a built-in command by calling Tcl _Cr eat eConmand
with the name of the command and a new command procedure.

The result protocol

The EqCnd procedure returns aresult by setting i nt er p- >r esul t to point to one of
severa static strings. However, the result string can also be managed in several other
ways. Tcl definesaprotocol for setting and using the result, which allows for dynamically-
alocated results and provides a small static areato avoid memory-allocation overheadsin
simple cases.

Thefull definition of the Tcl _| nt er p structure, asvisible outside the Tcl library, is
asfollows:

typedef struct Tcl _Interp {
char *result;
Tcl _FreeProc *freeProc;
i nt errorlLine;
} Tcl _Interp;
Thefirst field, r esul t , pointsto the interpreter’s current result. The second field,
f r eePr oc, isused when freeing dynamically-allocated results; it will be discussed
below. Thethird field, er r or Li ne, isrelated to error handling and is described in Sec-
tion XXX.

When Tcl invokes acommand procedurether esul t and f r eePr oc fields always
have well-defined values. | nt er p- >r esul t pointsto asmall character array that is
part of the interpreter structure and the array has been initialized to hold an empty string
(thefirst character of the array iszero). | nt er p- >f r eePr oc isaways zero. This state
isreferred to asthe initialized state for the result. Not only isthis the state of the result
when command procedures are invoked, but many Tcl library procedures also expect the
interpreter’s result to be in the initialized state when they are invoked. If acommand pro-
cedure wishes to return an empty string as itsresult, it simply returns without modifying
interp->result orinterp->freeProc.

There are three ways that acommand procedure can specify a non-empty result. First,
it can modify i nt er p- >r esul t to point to astatic string asin EqCnd. A string can be
considered to be static as long asits value will not change before the next Tel command
procedure isinvoked. For example, Tk stores the name of each widget in adynamically-
alocated record associated with the widget, and it returns widget names by setting
i nt er p->resul t tothe name string in the widget record. This string is dynamically

DRAFT (4/16/93): Distribution Restricted

29.4 Procedures for managing the result 273

29.4

allocated, but widgets are deleted by Tcl commands so the string is guaranteed not to be
recycled before the next Tcl command executes. If astring is stored in automatic storage
associated with a procedure it cannot be treated as static, sinceits value will change as
soon as some other procedure re-uses the stack space.

The second way to set aresult isto use the pre-allocated spaceinthe Tcl _I nterp
structure. Initsinitialized statei nt er p- >r esul t pointsto this space. If acommand
procedure wishes to return asmall result it can copy it to the location pointed to by
i nt er p->r esul t . For example, the procedure below implements a command
numaor ds that returns adecimal string giving a count of its arguments:

int NumwordsCrd(C i entData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
sprintf(interp->result, "%", argc);
return TCL_CK;
}
The size of the pre-allocated space is guaranteed to be at least 200 bytes; you can retrieve
the exact size with the symbol TCL_RESULT_SI ZE defined by t ¢l . h. It'sgeneraly
safe to use this areafor printing afew numbers and/or short strings, but it isnot safe to
copy strings of unbounded length to the pre-allocated space.

The third way to set aresult isto alocate memory with a storage allocator such as
mal | oc, storetheresult string there, and set i nt er p- >r esul t to the address of the
memory. In order to ensure that the memory is eventually freed, you must also set
i nt er p- >f r eePr oc to the address of aprocedure that Tcl can call to free the memory,
such asf r ee. In this case the dynamically-allocated memory becomes the property of
Tcl. Once Tcl hasfinished using the result it will free it by invoking the procedure speci-
fied by i nt er p- >f r eePr oc. This procedure must match the following procedure pro-
totype:

typedef void Tcl _FreeProc(char *bl ockPtr);

The procedure will be invoked with a single argument containing the address that you
stored ini nt er p- >r esul t . Inmost casesyou'll useral | oc for dynamic alocation
andthusseti nt er p- >f r eePr oc tof r ee, but the mechanism is general enough to
support other storage allocators too.

Procedures for managing the result

Tcl provides several library procedures for manipulating the result. These procedures
all obey the protocol described in the previous section, and you may find them more con-
venient than settingi nt er p- >resul t andi nt er p- >f r eePr oc directly. Thefirst
procedureis Tcl _Set Resul t, which simply implements the protocol described above.
For example, EQCnd could have replaced the statement

interp->result = "wong # args";

DRAFT (4/16/93): Distribution Restricted

274

Creating New Tcl Commands

withacal toTcl _Set Resul t asfollows:
Tcl _Set Result(interp, "wong # args", TCL_STATIC);

Thefirst argumentto Tcl _Set Resul t isan interpreter. The second argument isastring
to use as result, and the third argument gives additional information about the string.
TCL_STATI Cmeansthat the string is static, so Tcl _Set Resul t just storesits address
intoi nt erp->result.Avaueof TCL_VOLATI LE for the third argument means that
the string is about to change (e.g. it's stored in the procedure’s stack frame) so a copy must
bemadefor theresult. Tcl _Set Resul t will copy the string into the pre-allocated space
if it fits, otherwise it will allocate new memory to use for the result and copy the string
there (setting i nt er p- >f r eePr oc appropriately). If the third argument isTCL_DY-
NAM C it means that the string was allocated with mal | oc and is now the property of
Tcl: Tcl _Set Resul t will seti nt er p- >f r eePr oc tof r ee asdescribed above.
Finally, the third argument may be the address of a procedure suitable for usein

i nt er p- >f r eePr oc; inthis case the string is dynamically-allocated and Tcl will even-
tually call the specified procedureto freeiit.

Tcl _AppendResul t makesit easy to build up resultsin pieces. It takes any num-
ber of strings as arguments and appends them to the interpreter’s result in order. Asthe
result growsin length Tcl _AppendResul t alocates new memory for it. Tcl _Ap-
pendResul t may be called repeatedly to build up long resultsincrementally, and it does
this efficiently even if the result becomes very large (e.g. it allocates extra memory so that
it doesn't have to copy the existing result into alarger area on each call). Hereisan imple-
mentation of theconcat command that uses Tcl _AppendResul t:

int ConcatCnd(CientData clientData,
Tcl Interp *interp, int argc, char *argv[]) {
int i;
if (argc == 1) {
return TCL_CK;

}I'cl _AppendResul t (i nterp, argv[1l], (char *) NULL);
for (i =2; i <argc; i++) {
Tcl _AppendResul t(interp, " ", argv[i],
(char *) NULL);
let urn TCL_OK;
}
The NULL argument ineach call to Tcl _AppendResul t marksthe end of the stringsto
append. Sincetheresult isinitially empty, thefirst call to Tcl _AppendResul t just sets
theresult to ar gv[1] ; each additional call appends one more argument preceded by a
separator space.
Tcl _AppendEl enent issimilarto Tcl _AppendResul t except that it only

adds one string to the result at atime and it appendsit asalist element instead of araw

DRAFT (4/16/93): Distribution Restricted

29.5 ClientData and deletion callbacks 275

29.5

string. It's useful for creating lists. For example, here is a simple implementation of the
i st command:

int ListCnd(ClientData clientData, Tcl _Interp *interp,
int argc, char **argv) {
int i;
for (i =1; i < argc; i++) {
Tcl _AppendEl errent (i nterp, argv[i]);

return TCL_OK;

}
Each call to Tcl _AppendEl enent adds one argument to the result. The argument is
converted to a proper list element before appending it to the result (e.g. itisenclosed in
braces if it contains space characters). Tcl _AppendEl enent also adds a separator
spaceif it's needed before the new element (no space is added if the result is currently
empty or if its charactersare“ {“, which means that the new element will be the first ele-
ment of asub-list). For example, if Li st Cnd isinvoked with four arguments, “I i st ”,

“abc”,“x y”,and“}”, it produces the following result:

abc {x y} \}
LikeTcl _AppendResul t, Tcl _AppendEl ermrent grows the result space if needed
and does it in away that is efficient even for large results and repeated calls.

If you set the result for an interpreter and then decide that you want to discard it (e.g.
because an error has occurred and you want to replace the current result with an error mes-
sage), you should call the procedure Tcl _Reset Resul t . It will invoke
i nt er p->freeProc if needed and then restore the interpreter’s result to its initialized
state. You can then store anew value in the result in any of the usual ways. You need not
cal Tcl _Reset Resul t if you'regoingtouse Tcl _Set Resul t to store the new
result, since Tcl _Set Resul t takes care of freeing any existing result.

ClientData and deletion callbacks

The fourth and fifth argumentsto Tcl _Cr eat eCommand, cl i ent Dat a and
del et ePr oc, were not discussed in Section 29.2 but they are useful when commands
are associated with objects. Thecl i ent Dat a argument is used to pass aone-word value
to acommand procedure. Tcl savesthecl i ent Dat a valuethat is passedto Tcl _Cr e-
at eConmand and usesit as the first argument to the command procedure. The type
d i ent Dat a islarge enough to hold either an integer or a pointer value. It isusually the
address of a C data structure for the command to manipulate.

Tcl and Tk use callback procedures in many places. A callback is a procedure whose
addressis passed to alibrary procedure and saved in adata structure. L ater, at some signif-
icant time, the address is used to invoke the procedure (“call it back”). A command proce-

DRAFT (4/16/93): Distribution Restricted

276

Creating New Tcl Commands

dureisan example of acallback: Tcl associates the procedure address with a Tcl command
name and calls the procedure whenever the command isinvoked. When a callback is spec-
ifiedin Tcl or Tk aCl i ent Dat a argument is usually provided along with the procedure
addressand the Cl i ent Dat a valueis passed to the callback as itsfirst argument.

Thedel et ePr oc argument to Tcl _Cr eat eCommand specifiesadeletion call-
back. If itsvalueisn’t NULL then it is the address of a procedure for Tcl to invoke when
the command is deleted. The procedure must match the following prototype:

typedef void Tcl _CndDel eteProc(ClientData clientData);
The deletion callback takes a single argument, which is the ClientData val ue specified
when the command was created. Deletion callbacks are used for purposes such as freeing
the object associated with a command.

Figure 29.1 showshow cl i ent Dat a and del et ePr oc can be used to implement
counter objects. The application containing this code must register Count er Cnd asaTcl
command using the following call:

Tcl _CreateCommand(interp, "counter", CounterCnd,

(dientData) NULL, (Tcl_CndDel eteProc) NULL);

New counters can then be created by invoking the count er Tcl command; each invoca
tion creates a new object and returns a name for that object:

count er

ctrQ

count er

ctrl
Count er Cd isthe command procedure for count er . It alocates a structure for the
new counter and initializes its value to zero. Then it creates a name for the counter using
the static variable i d, arranges for that name to be returned as the command’s result, and
incrementsi d so that the next new counter will get a different name.

This example uses the object-oriented style described in Section 27.3, where thereis
one command for each counter object. As part of creating a new counter Count er Crd
creates anew Tcl command named after the counter. It uses the address of the Count er
structure asthe Cl i ent Dat a for the command and specifies Del et eCount er asthe
deletion callback for the new command.

Counters can be manipulated by invoking the commands named after them. Each
counter supports two options to its command: get , which returns the current value of the
counter, and next , which increments the counter’s value. Oncect r 0 and ct r 1 were
created above, the following Tcl commands could be invoked:

ctr0 next; ctr0O next; ctr0O get
2

ctrl get

0

DRAFT (4/16/93): Distribution Restricted

29.5 ClientData and deletion callbacks 277

typedef struct {
int val ue;
} Counter;

int CounterCrd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Counter *counterPtr;
static int id = 0;
if (argc = 1) {
interp->result = "wong # args";
return TCL_ERROR;
}
counterPtr = (Counter *) mall oc(sizeof (Counter));
counterPtr->value = 0;
sprintf(interp->result, "ctr%", id);
i d++;
Tcl _CreateConmmand(interp, interp->result, ObjectCnd,
(CientData) counterPtr, DeleteCounter);
return TCL_COK;

}

int GhjectCnd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
CounterPtr *counterPtr = (Counter *) clientData;
if (argc !'=2) {
interp->result = "wong # args";
return TCL_ERROR;

}
if (strcmp(argv[1], "get") == 0) {
sprintf(interp->result, "%", counterPtr->value);
} else if (strcnp(argv[1l], "next") == 0) {
counter Ptr->val uet+;
} else {
Tcl _AppendResul t (i nterp, "bad counter comand \"",
argv[1], "\": should be get or next",
(char *) NULL);
return TCL_ERROR;

return TCL_COK;
}

voi d Del eteCounter(ClientData clientData) {
free((char *) clientData);
}

Figure 29.1. Animplementation of counter objects.

DRAFT (4/16/93): Distribution Restricted

278

Creating New Tcl Commands

Note:

29.6

ctrO clear
bad counter command "clear": should be get or next

The procedure Gbj ect Crrd implements the Tcl commands for all existing counters. It is
passed adifferent C i ent Dat a argument for each counter, which it casts back to avalue
of type Count er *.(Qbj ect Crd then checksar gv[1] to see which command option
wasinvoked. If it wasget then it returns the counter’s value as adecimal string; if it was
next then it increments the counter’s value and leavesi nt er p- >r esul t untouched
so that the result is an empty string. If an unknown command was invoked then

nj ect Cnd callsTcl _AppendResul t to create a useful error message.

It is not safe to @ate the elwr message with a statement like
sprintf(interp->result, "bad counter conmmand \"%s\":
"shoul d be get or next", argv[1]);
This is unsafe because gv[1] has unknown length. It could be so long sat i nt f
overflows the space allocated in the intetpr and corrupts memory .

Tcl _AppendResul t is safe because it checks the lengths of garaents and
allocates as much space as needed for¢halt.

To destroy a counter you can delete its Tcl command, for example:

renane ctr0 {}

As part of deleting the command Tcl will invoke Del et ePr oc, which frees up the mem-
ory associated with the counter.

This object-oriented implementation of counter objectsis similar to Tk’'s implementa-
tion of widgets:. there is one Tcl command to create new instances of each counter or wid-
get, and one Tcl command for each existing counter or widget. A single command
procedure implements all of the counter or widget commands for a particular type of
object, receiving a ClientData argument that identifies a specific counter or widget. A dif-
ferent mechanism is used to delete Tk widgets than for counters above, but in both cases
the command corresponding to the object is deleted at the same time as the object.

Deleting commands

Tcl commands can be removed from an interpreter by calling Tcl _Del et eComand.
For example, the statement below will deletethe ct r 0 command in the same way as the
r enanme command above:

Tcl _Del et eCommand(interp, "ctr0");
If the command has a deletion callback then it will be invoked before the command is
removed. Any command may be deleted, including built-in commands, application-spe-
cific commands, and Tcl procedures.

DRAFT (4/16/93): Distribution Restricted

Chapter 30
Parsing

30.1

This chapter describeglibrary procedures for parsing and evaluating strings in various
forms such as integers, expressions and lists. These procedures are typically used by com-
mand procedures to process the wordscbEdmmands. Seeable 30.1 for a summary of

the procedures.

Numbers and booleans

Tcl provides three procedures for parsing numbers and boolean viadleszet | nt

Tcl _Get Doubl e, andTcl _Get Bool ean. Each of these procedures takes thrga-ar
ments: an interpretea string, and a pointer to a place to store the value of the string. Each
of the procedures returii€L._ OK or TCL_ ERROR to indicate whether the string was
parsed successfullifor example, the command procedure below Tises Cet | nt to
implement assumcommand:

int SumCnd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
int numl, nung;
if (argc !'= 3) {
interp->result = "wong # args"”;
return TCL_ERRCR;

}

if (Tcl_GetInt(interp, argv[l1l], ¨) != TCL_CK) {
return TCL_ERROR;

}

279

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

280

Parsing

int Tcl_Getlnt(Tcl_Interp *interp, char *string, int *intPtr)
Parsesst ri ng asan integer, storesvalueat *i nt Pt r, and returns
TCL_OK. If an error occurs while parsing, returns TCL_ ERROR and stores
an error messageini nt er p- >resul t.

int Tcl_GetDouble(Tcl _Interp *interp, char *string, double *dou-
bl ePtr)
SameasTcl _Get | nt except parsesst ri ng as afloating-point value and
storesvalue at * doubl ePt r.

int Tcl _CetBool ean(Tcl _Interp *interp, char *string, int *intPtr)
SameasTcl _Get | nt except parsesst r i ng asaboolean and stores 0/1
valueat *i nt Pt r. See Table 30.2 for legal valuesfor st ri ng.

nt Tcl _ExprString(Tcl _Interp *interp, char *string)
Evaluates st r i ng as an expression, stores value as string in
i nterp->result,andreturns TCL_CK. If an error occurs during evalua-
tion, returns TCL_ ERROR and stores an error messageini nt er p-
>result.

int Tcl _ExprLong(Tcl _Interp *interp, char *string, |long *l ongPtr)
SameasTcl _Expr St ri ng except stores value as along integer at
*| ongPt r. An error occursif the value can’t be converted to an integer.

nt Tcl _ExprDoubl e(Tcl _Interp *interp, char *string,

doubl e *doubl ePtr)

Sameas Tcl _Expr St ri ng except stores value as double-precision float-
ing-point value at * doubl ePt r. An error occursif the value can’'t be con-
verted to afloating-point number.

int Tcl _ExprBool ean(Tcl _Interp *interp, char *string, int

*intPtr)

SameasTcl _Expr St ri ng except stores value as 0/1 integer at

*i nt Pt r. Anerror occursif the value can’t be converted to a boolean

value.

nt Tcl _SplitList(Tcl _Interp *interp, char *list, int *argcPtr,
char ***argvPtr)
Parses| i st asaTcl list and creates an array of strings whose values are the
elements of list. Stores count of number of list elementsat* ar gcPt r and
pointer to array at * ar gvPt r. Returns TCL_OK. If an error occurs while
parsing | i st , returns TCL_ERROR and stores an error message in
i nterp->result.Spacefor string array is dynamically allocated; caller
must eventually pass* ar gvPtr tofree.
char *Tcl _Merge(int argc, char **argv)
Inverseof Tcl _Spl it Li st.Returnspointer to Tcl list whose elements are
the members of ar gv. Result is dynamically-allocated; caller must eventu-
aly passittofree.

if (Tcl _Getint(interp, argv[2], &nunR) !'= TCL_CK) {
return TCL_ERROR;

sprintf(interp->result, "%l", nunil+nun®);

DRAFT (4/16/93): Distribution Restricted

30.1 Numbers and booleans 281

return TCL_COK;

}
SuntCnd expects each of the command’s two arguments to be an integer. It calls
Tcl _Get | nt to convert them from strings to integers, then it sums the values and con-
vertsthe result back to adecimal stringini nt er p- >resul t. Tcl _Get | nt accepts
stringsin decimal (e.g. “492"), hexadecimal (e.g. “Ox1ae”) or octal (e.g. “017"), and
allows them to be signed and preceded by white space. If the string isin one of these for-
matsthen Tcl _Get | nt returns TCL_ OK and storesthe value of the string in the location
pointed to by itslast argument. If the string can't be parsed correctly then Tcl _Get | nt
stores an error message ini nt er p- >r esul t and returns TCL_ ERROR; SuntCnd then
returns TCL_ERRORto itscaller withi nt er p- >r esul t still pointing to the error mes-
sagefrom Tcl _Get I nt.

Here are some examples of invoking the sumcommand in Tcl scripts:

sum 2 3

S

sum 011 0x14

29

sum 3 6z

expected integer but got "6z"

Tcl _Get Doubl e issimilarto Tcl _Get | nt except that it expects the string to
consist of afloating-point number suchas“- 2. 2” or “3. Oe- 6” or “7”. It stores the dou-
ble-precision value of the number at the location given by itslast argument or returns an
error inthesameway asTcl _Get | nt . Tcl _Get Bool ean issimilar except that it con-
vertsthe string to a0 or 1 integer value, which it stores at the location given by its last

argument. Any of the true valueslisted in Table 30.2 convertsto 1 and any of the false val-
ues convertsto O.

True Values | FalseVaues
1 0
true fase
on off
yes no

Table 30.2. Legal valuesfor boolean strings parsed by Tcl _Get Bool ean. Any of the values
may be abbreviated or capitalized.

DRAFT (4/16/93): Distribution Restricted

282

Parsing

30.2

Many other Tcl and Tk library procedures are similar to Tcl _Get | nt in the way
they useani nt er p argument for error reporting. These procedures all expect the inter-
preter’sresult to bein itsinitialized state when they are called. If they compl ete success-
fully then they usually leave theresult in that state; if an error occurs then they put an error
message in the result. The procedures’ return valuesindicate whether they succeeded, usu-
ally asaTCL_OK or TCL_ERROR completion code but sometimes in other forms such as
aNULL string pointer. When an error occurs, al the caller needsto doisto return afailure
itself, leaving the error message in the interpreter’s result.

Expression evaluation

Tcl provides four library procedures that evaluate expressions of the form described in
Chapter XXX: Tcl _Expr St ri ng, Tcl _Expr Long, Tcl _Expr Doubl e, and
Tcl _Expr Bool ean. These procedures are similar except that they return the result of
the expression in different forms as indicated by their names. Here isadlightly ssimplified
implementation of the expr command, which usesTcl _Expr St ri ng:
int ExprCrd(dientData clientData, TcllInterp *interp,
int argc, char *argv[]) {
if (argc '=2) {
interp->result = "wong # args";
return TCL_ERRCR

}
return Tcl _ExprString(interp, argv[1]);

}

All Expr Cnd doesisto check its argument count and then call Tcl _Expr Stri ng.
Tcl _Expr Stri ng evaluatesits second argument as a Tcl expression and returns the
valueasastringini nt er p- >resul t.LikeTcl _Get I nt, it returns TCL_CKiif it
evaluated the expression successfully; if an error occursit leaves an error message in
i nterp->result andreturns TCL_ERROR.

Tcl _ExprLong, Tcl _Expr Doubl e, and Tcl _Expr Bool ean aresimilar to
Tcl _Expr Stri ng except that they return the expression’s result as along integer, dou-
ble-precision floating-point number, or 0/1 integer, respectively. Each of the procedures
takes an additional argument that pointsto a place to store the result. For these procedures
the result must be convertible to the requested type. For example, if “abc” is passed to
Tcl _Expr Long thenit will return an error because “abc” has no integer value. If the
string “40” ispassed to Tcl _Expr Bool ean it will succeed and store 1 in the value
word (any non-zero integer is considered to be true).

DRAFT (4/16/93): Distribution Restricted

30.3 Manipulating lists 283

30.3 Manipulating lists

Tcl provides severa procedures for manipulating lists, of which the most useful are
Tcl _SplitlList andTcl _Merge. Givenastring intheform of aTcl list,
Tcl _SplitList extractsthe elements and returns them as an array of string pointers.
For example, hereis an implementation of Tcl's| i ndex command that uses
Tcl _SplitlList:
int LindexCnd(CdientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
int index, listArgc;
char **|istArgv;
if (argc !'= 3) {
interp->result = "wong # args";
return TCL_ERROR;

}
if (Tcl _Getint(interp, argv[2], & ndex) != TCL_CK) {
return TCL_ERROR;

}
if (Tcl _SplitList(interp, argv[1l], & istArgc,
&istArgv) = TCL_OK) {
return TCL_ERRCR

}
if ((index >= 0) && (index < listArgc)) {
Tcl _SetResult(interp, |istArgv[index],
TCL_VOLATI LE);

%ree((char *) listArgv);
return TCL_CK;
}

Li ndexCd checksits argument count, callsTcl _CGet | nt to convert ar gv[2] (the
index) into an integer, then calls Tcl _Spl i t Li st to parsethelist. Tcl _SplitLi st
returns a count of the number of elementsinthelisttol i st Ar gc. It also creates an array
of pointersto the values of the elements and stores a pointer tothat array inl i st Ar gv. If
Tcl _SplitLi st encountersan error in parsing the list (e.g. unmatched braces) then it
returns TCL_ ERROR and leaves an error message ini nt er p- >r esul t ; otherwise it
returns TCL_OK.

Tcl _SplitList calsmal | oc to allocate space for the array of pointersand for
the string values of the elements; the caller must free up this space by passing!l i st Ar gv
tof r ee. The space for both pointers and strings is allocated in a single block of memory
soonly asinglecall tof r ee isneeded. Li ndexCnd callsTcl _Set Resul t to copy the
desired element into the interpreter’s result. It specifies TCL_VOLATI LE to indicate that
the string value is about to be destroyed (its memory will be freed); Tcl _Set Resul t
will make acopy of thel i st Argv[i ndex] fori nt er p’sresult. If the specified index

DRAFT (4/16/93): Distribution Restricted

284

Parsing

is outside the range of elementsin thelist then Li ndexCnd leavesi nt er p- >r esul t
initsinitialized state, which returns an empty string.

Tcl _Mergeistheinverseof Tcl _SplitLi st.Givenar gc andar gv informa
tion describing the elements of alist, it returnsanmal | oc’ed string containing the list.
Tcl _Mer ge alwayssucceeds so it doesn’t need ani nt er p argument for error reporting.
Here's another implementation of thel i st command, which uses Tcl _Mer ge:

int ListCrd2(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
interp->result = Tcl _Merge(argc-1, argv+1);
interp->freeProc = (Tcl _FreeProc *) free;
return TCL_OK;
}
Li st Cnd2 takestheresult from Tcl _Mer ge and storesit in the interpreter’s result.
Sincethelist string is dynamically alocated Li st Cnd2 setsi nt er p- >f r eePr oc to

f r ee sothat Tcl will call f r ee to release the storage for the list when it is no longer
needed.

DRAFT (4/16/93): Distribution Restricted

Chapter 31
EXxceptions

31.1

Many Tcl commands, such a§ andwhi | e, have aguments that arecT scripts. The
command procedures for these commands inVake Eval recursively to evaluate the
scripts. IfTcl _Eval returns a completion code other thaEL_ OK then arexception is

said to have occurred. Exceptions incldd®d ERROR, which was described in Chapter

31, plus several others that have not been mentioned before. This chapter introduces the
full set of exceptions and describes how to unwind nested evaluations and leave useful
information in theer r or | nf o ander r or Code variables. Seeable 31.1 for a sum-

mary of procedures related to exception handling.

Completion codes.

Table 31.2 lists the full set otTcompletion codes that may be returned by command pro-
cedures. If a command procedure returns anything otheifttlanOK then Tl aborts the
evaluation of the script containing the command and returns the same completion code as
the result offcl _Eval (orTcl _Eval Fi |l e, etc). TCL_OK andTCL_ERROR have
already been discussed; they are used for normal returns and errors, respébtvely
completion code$CL_BREAK or TCL__ CONTI NUE occur ifbr eak orcont i nue com-
mands are invoked by a script; in both of these cases the intepretait will be an
empty string. Th@CL_RETURN completion code occursiifet ur n is invoked; in this
case the interpreterresult will be the intended result of the enclosing procedure.

As an example of how to generat€ @ BREAK completion code, here is the com-
mand procedure for tHa eak command:

285

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

286

Exceptions

Tcl _AddErrorinfo(Tcl _Interp *interp, char *message)

Tcl _SetError Code(Tcl _Interp *interp, char *field, char *field,

Addsmessage to stack trace being formed int he err or | nf o variable.

(char *) NULL)
Creates alist whose elements are thef i el d arguments, and setsthe
er r or Code variable to the contents of thelist.

Table 31.1. A summary of Tcl library proceduresfor settinger r or | nf o and er r or Code.

Completion Code Meaning
TCL_OK Command completed normally.
TCL_ERROR Unrecoverable error occurred.
TCL_BREAK Br eak command was invoked.
TCL_CONTINUE Cont i nue command was invoked.
TCL_RETURN Ret ur n command was invoked.

Table 31.2. Completion codes that may be returned by command procedures and procedures that
evaluate scripts, suchas Tcl _Eval .

int BreakCnd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
if (argc '=2) {
interp->result = "wong # args"”;
return TCL_ERRCR;

}
return TCL_BREAK;

}

TCL_BREAK, TCL_CONTI NUE, and TCL_RETURN are used to unwind nested
script evaluations back to an enclosing looping command or procedure invocation. Under
most circumstances, any procedure that receives a completion code other than TCL_OK
from Tcl _Eval should immediately return that same completion code to its caller with-
out modifying the interpreter’s result. However, afew commands process some of the spe-
cial completion codes without returning them upward. For example, hereisan
implementation of thewhi | e command:

DRAFT (4/16/93): Distribution Restricted

31.1 Completion codes. 287

int WhileCd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {

i nt bool ;
i nt code;
if (argc !'= 3) {
interp->result = "wong # args";

return TCL_ERROR;

}
while (1) {
Tcl _Reset Result (i nterp);
i f (Tcl _ExprBool ean(interp, argv[1], &bool)
I= TCL_CK) {
return TCL_ERROR;

}
if (bool == 0) {
return TCL_CK;

code = Tcl _Eval (interp, argv[2]);

if (code == TCL_CONTINUE) {
conti nue;

} else if (code == TCL_BREAK) {
return TCL_COK;

} else if (code !'= TCL_OK) {
return code;

}

}

}
After checking its argument count, VWi | eCrd enters aloop where each iteration evalu-
ates the command’s first argument as an expression and its second argument as a script. If
an error occurs while evaluating the expression then VWi | eCnd returnsthe error. If the
expression evaluates successfully but its value is 0, then the command terminates with a
normal return. Otherwise it evaluates the script argument. If the completion codeis
TCL_CONTI NUE then Wi | eCnd goes on to the next loop iteration. If the codeis
TCL_BREAK then Whi | eCnd ends the execution of the command and returns TCL_ OK
toitscaller. If Tcl _Eval returnsany other completion code besides TCL_ OK then Whi -
| eCrd simply reflects that code upwards. This causes the proper unwinding to occur on
TCL_ERRORor TCL_RETURN codes, and it will also unwind if any new completion
codes are added in the future.

If an exceptional return unwinds all the way through the outermost script being evalu-
ated then Tcl checks the completion code to be sureit is either TCL_OK or TCL_ERROR.
If not then Tcl turns the return into an error with an appropriate error message. Further-
more, if aTCL_BREAK or TCL_ CONTI NUE exception unwinds all the way out of a pro-
cedure then Tcl also turnsit into an error. For example:

DRAFT (4/16/93): Distribution Restricted

288 Exceptions

br eak
i nvoked "break" outside of a |oop
proc badbreak {} {break}
badbr eak
i nvoked "break" outside of a |Ioop

Thus applications need not worry about completion codes other then TCL_ OK and

TCL_ERROR when they evaluate scripts from the outermost level.

31.2 Augmenting the stack trace in errorinfo

When an error occurs, Tcl modifiestheer r or | nf o global variable to hold a stack trace
of the commands that were being evaluated at the time of the error. It does this by calling
the procedure Tcl _ AddEr r or | nf o, which has the following prototype:

void Tcl _AddErrorinfo(Tcl _Interp *interp,
char *nessage)

Thefirst call to Tcl _AddEr r or | nf o after an error setser r or | nf o to the error mes-
sagestoredini nt er p- >r esul t and then appends message. Each subsubsequent call
for the same error appends message toer r or | nf o’s current value. Whenever acom-
mand procedure returns TCL_ ERROR Tcl _Eval callsTcl _AddErr or | nf o to log
information about the command that was being executed. If there are nested callsto
Tcl _Eval then each one adds information about its command as it unwinds, so that a
stack trace formsiner r or | nf o.

Command procedures can call Tcl _AddEr r or | nf o themselves to provide addi-
tional information about the context of the error. Thisis particularly useful for command
proceduresthainvoke Tcl _Eval recursively. For example, consider the following Tcl
procedure, which is a buggy attempt to find the length of the longest element in alist:

proc longest list {
set i [lIlength $list]
while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {
set max $l ength
}

incr i

return $nmax

}

This procedure is buggy because it never initializes the variable max, so an error will
occur whenthei f command attemptsto read it. If the procedure isinvoked with the com-

DRAFT (4/16/93): Distribution Restricted

31.2 Augmenting the stack trace in errorinfo 289

mand “longest {a 12345 xyz} ", then the following stack trace will be stored in
errorinfo after the error:

can’t read "max": no such variable
while executing
"if {$length > $max} {
set max $length

y
("while" body line 3)
invoked from within
“while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {
set max $length
}

incr i

3

(procedure "longest” line 3)

invoked from within

“longest {a 12345 xyz}"

All of theinformation is provided by Tcl_Eval except for the two lines with comments
in parentheses. The first of these lines was generated by the command procedure for
while , and the second was generated by the Tcl code that evaluates procedure bodies. If
you used the implementation of while on page 287 instead of the built-in Tcl implemen-
tation then the first parenthesized message would be missing. The C code below isa
replacement for the last else clausein WhileCmd ; it uses Tcl_AppendResult to
add the parenthetical remark.

} else if (code != TCL_OK) {
if (code == TCL_ERROR) {
char msg[50];
sprintf(msg, "\n (\"while\" body line %d)",
interp->errorLine);
Tcl_AddErrorinfo(interp, msg);
}

return code;

}

TheerrorLine fieldof interp issetby Tcl Eval whenever acommand procedure
returns an error; it gives the line number of the command that produced the error, within
the script being executed. A line number of 1 correspondsto thefirst line, whichistheline
containing the open brace in this example; theif command that generated the error ison
line 3.

DRAFT (4/16/93): Distribution Restricted

290

Exceptions

Note:

31.3

For simple Tcl commands you shouldn’t need to invoke Tcl _AddEr r or | nf o: the
information provided by Tcl _Eval will be sufficient. However, if you write code that
calsTcl _Eval then| recommend calling Tcl _AddEr r or | nf o whenever
Tcl _Eval returnsan error, to provide information about why Tcl _Eval wasinvoked
and also to include the line number of the error.

You must calllcl _AddEr r or | nf o rather than trying to set ther r or | nf o variable

directly, becausd@cl _AddEr r or | nf o contains special code to detect the first call after
an eror and clear out the old contentsexfr or | nf 0.

Setting errorCode

Note:

The last piece of information set after an error isthe er r or Code variable, which pro-
vides information about the error in aform that’s easy to process with Tcl scripts. It's
intended for use in situations where a script is likely to catch the error, determine exactly
what went wrong, and attempt to recover from it if possible. If acommand procedure
returnsan error to Tcl without setting er r or Code then Tcl setsit to NONE. If acommand
procedure wishesto provide informationin er r or Code then it should invoke Tcl _Se-
t Er r or Code before returning TCL_ ERROR.

Tcl _Set Er r or Code takes as arguments an interpreter and any number of string
arguments ending with a null pointer. It forms the stringsinto alist and storesthe list as
thevalue of er r or Code. For example, suppose that you have written several commands
to implement gizmo objects, and that there are several errors that could occur in com-
mands that manipulate the objects, such as an attempt to use a non-existent object. If one
of your command procedures detects a non-existent object error, it might set er r or Code
asfollows:

Tcl _Set Error Code(interp, "dzZMJ', "EXI ST",
"no object by that nane", (char *) NULL);

Thiswill leavethevalue“d ZMO EXI ST {no obj ect by that nane}”in
err or Code. G ZMOidentifies a general class of errors (those associated with gizmo
objects), EXI ST isthe symbolic name for the particular error that occurred, and the last
element of thelist isahuman-readable error message. You can store whatever you want in
er r or Code aslong asthefirst list element doesn’t conflict with other values already in
use, but the overall ideaisto provide symbolic information that can easily be processed by
aTcl script. For example, a script that accesses gizmos might catch errors and if the error
isanon-existent gizmo it might automatically create a new gizmo.
It's important to calllcl _Set Er r or Code rather than settingr r or Code directly
with Tcl _Set Var. This is becaus€c| _Set Er r r or Code also sets other information

in the interpeter so thaer r or Code isnt later set to its default value; if you set
er r or Code directly, then €l will override your value with the default valhENE.

DRAFT (4/16/93): Distribution Restricted

Chapter 32
Accessing Tcl Variables

This chapter describes how you can accebsdriables from C codecTprovides library
procedures to set variables, read their values, and unset them. It also provides a tracing
mechanism that you can use to monitor and restrict variable accesses3Z.1 summa-
rizes the library procedures that are discussed in the chapter

32.1 Naming variables

The procedures related to variables come in pairs subtlasSet Var andTcl _Set -

Var 2. The two procedures in each paiffelifonly in the way they name alvariable. In

the first procedure of each pauch aJcl _Set Var, the variable is named with a single

string agumentyar Name. This form is typically used when a variable name has been

specified as angnment to a @ command. The string can name a scalar variable ¢.g. “

or “f i el dNamne”, or it can name an element of an armyg. ‘a(42) " or

“area(Sout h Aneri ca)”. No substitutions or modifications are performed on the

name. For example, ¥far Nane is “a($i) " Tcl will not use the value of variableas

the element name within array it will use the string $i " literally as the element name.
The second procedure of each pair has a name endiagy m§.Tcl _Set Var 2. In

these procedures the variable name is separated intogumemtsnanel andnane?2.

If the variable is a scalar theanel is the name of the variable andne?2 is NULL. If

the variable is an array element threrre 1 is the name of the array andne?2 is the

name of the element within the arrais form of procedure is less commonly used but it

is slightly faster than the first form (procedures likd _Set Var are implemented by

calling procedures lik&cl _Set Var 2).

291

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

292 Accessing Tcl Variables

char *Tcl _SetVar(Tcl _Interp *interp, char *varNaneg,
char *newval ue, int flags)
char *Tcl _SetVar2(Tcl _Interp *interp, char *namel, char *name2,
char *newval ue, int flags)
Sets the value of the variableto newVal ue, creating the variableif it didn't
aready exist. Returns the new value of the variable or NULL in case of error.
char *Tcl _CGetVar(Tcl _Interp *interp, char *varNaneg,
int flags)
char *Tcl _CGetVar2(Tcl _Interp *interp, char *nanmel, char *name2,
int flags)
Returns the current value of the variable, or NULL in case of error.
int Tcl_UnsetVar(Tcl _Interp *interp, char *varNane,
int flags)
int Tcl_UnsetVar2(Tcl _Interp *interp, char *namel, char *nane2,
int flags)
Removes the variable fromi nt er p and returns TCL_OK. If the variable
doesn’t exist or has an active trace then it can’t be removed and
TCL_ERRCRisreturned.

int Tcl _TraceVar(Tcl _Interp *interp, char *varNane,
int flags, Tcl_VarTraceProc *proc, CientData clientData)
int Tcl _TraceVar2(Tcl _Interp *interp, char *nanel, char *nane2,
int flags, Tcl_VarTraceProc *proc, CientData clientData)
Arrangefor pr oc to beinvoked whenever one of the operations specified by
f1 ags isperformed on the variable. Returns TCL_OK or TCL_ERROR.
Tcl _UntraceVar(Tcl _Interp *interp, char *varNane,
int flags, Tcl_VarTraceProc *proc, CientData clientData)
Tcl _UntraceVar2(Tcl _Interp *interp, char *nanel, char *nane2,
int flags, Tcl_VarTraceProc *proc, CientData clientData)
Removes the trace on the variable that matchespr oc, cl i ent Dat a, and
fl ags, if thereisone.
ClientData Tcl _VarTracelnfo(Tcl _Interp *interp, char *var Nane,
int flags, Tcl_VarTraceProc *proc, CientData prevdientData)
ClientData Tcl _VarTracel nfo2(Tcl _Interp *interp, char *namel,
char *name2, int flags, Tcl_VarTraceProc *proc,
ClientData prevclientDat a)
If prevd i ent Dat a isNULL, returns the ClientData associated with the
first trace on the variable that matchesf | ags and pr oc (only the
TCL_GLOBAL_ONLY hit of f | ags isused); otherwise returnsthed i -
ent Dat a for the next trace matching f | ags and pr oc after the one whose
ClientDataisprevd i ent Dat a. ReturnsNULL if there are no (more)
matching traces.

Table 32.1. Tcl library procedures for manipulating variables. The procedures comein pairs; in one
procedure the variable is named with a single string (which may specify either ascalar or an array
element) and in the other procedure the variable is named with separate array and element names
(namel and nane2, respectively). If name2 is NULL then the variable must be a scalar.

DRAFT (4/16/93): Distribution Restricted

32.2 Setting variable values 293

Flag Name Meaning
TCL_GLOBAL_ONLY Reference global variable, regardless of
current execution context.

TCL_LEAVE ERR _MSG | If operation fails, leave error messagein
interp->result.

TCL_APPEND_VALUE | Append new valueto existing value
instead of overwriting.

TCL_LIST _ELEMENT Convert new valueto alist element before
setting or appending.

Table 32.2. Vauesthat may be OR’ ed together in the flags argumentsto Tcl _Set Var and
Tcl _Set Var 2. Other procedures use a subset of these flags.

32.2

Setting variable values

Tcl _Set Var and Tcl _Set Var 2 are used to set the value of avariable. For example,
Tcl _SetVar(interp, "a", "44", 0);
will set the value of variablea ini nt er p to the string “44”. If there does not yet exist a
variable named a then anew one will be created. The variableis set in the current execu-
tion context: if aTcl procedureis currently being executed, the variable will be alocal one
for that procedure; if no procedureis currently being executed then the variable will bea
global variable. If the operation completed successfully then the return value from
Tcl _Set Var isapointer to the variable's new value as stored in the variable table (this
valueis static enough to be used as an interpreter’s result). If an error occurred, such as
specifying the name of an array without also specifying an element name, then NULL is
returned.

Thelast argument to Tcl _Set Var or Tcl _Set Var 2 consists of an OR’ed combi-
nation of flag bits. Table 32.2 lists the symbolic values for the flags. If the TCL_ GLOBA-
L_ONLY flag is specified then the operation always appliesto aglobal variable, even if a
Tcl procedureis currently being executed. TCL_LEAVE _ERR_MSG controls how errors
arereported. Normally, Tcl _Set Var and Tcl _Set Var 2 just return NULL if an error
occurs. However, if TCL_LEAVE _ERR_MSG has been specified then the procedures will
also store an error message in the interpreter’s result. Thislast form is useful when the
procedure isinvoked from a command procedure that plans to abort if the variable access
fals.

Theflag TCL_APPEND_VALUE means that the new value should be appended to the
variable’s current value instead of replacing it. Tcl implements the append operation in a

DRAFT (4/16/93): Distribution Restricted

294

Accessing Tcl Variables

way that isrelatively efficient, even in the face of repeated appends to the samevariable. If
the variable doesn’t yet exist then TCL_ APPEND VAL UE has no effect.

Thelast flag, TCL_LI ST_ELEMENT, means that the new value should be converted
to aproper list element (e.g. by enclosing in braces if necessary) before setting or append-
ing. If both TCL_LI ST_ELEMENT and TCL_APPEND_VAL UE are specified then a sepa-
rator space is also added before the new element if it's needed.

Here is an implementation of the | append command that uses Tcl _Set Var :

i nt LappendCnd(d ientData clientData,
Tcl Interp *interp, int argc, char *argv[]) {
int i;
char *newval ue;
if (argc < 3) {
interp->result = "wong # args"”;
return TCL_ERROR;

for (i =2; i <argc; i++) {
newval ue = Tcl _SetVar (interp, argv[1l], argv[i],
TCL_LI ST_ELEMENT| TCL_APPEND_VALUE
| TCL_LEAVE _ERR MSG) ;
i f (newval ue == NULL) {
return TCL_ERROR;
}
}

interp->result = newval ue;
return TCL_CK;
}

It simply calls Tcl _Set Var once for each argument and lets Tcl _Set Var do al the
work of converting the argument to alist value and appending it to the variable. If an error
occursthen Tcl _Set Var leavesan error messageini nt er p- >resul t and Lap-
pendCnd returns the message back to Tcl. If the command completes successfully then it
returns the variable’'s final value asitsresult. For example, suppose the following Tcl com-
mand is invoked:

set a 44
| append a x {b c}

44 x {b c}
When LappendCnd isinvoked ar gc will be4. Ar gv[2] will be“x” and ar gv[3]
will be“b c¢” (the braces are removed by the Tcl parser). LappendCnrd makestwo calls
to Tcl _Set Var ; during the first call no conversion is necessary to produce a proper list
element, but during the second call Tcl _Set Var adds bracesback around “b ¢” before
appending it the variable.

DRAFT (4/16/93): Distribution Restricted

32.3 Reading variables 295

32.3 Reading variables

The procedures Tcl _Get Var and Tcl _Get Var 2 may be used to retrieve variable val-
ues. For example,

char *val ue;

value = Tcl _GetVar(interp, "a", 0);
will storeinval ue apointer to the current value of variable a. If the variable doesn’t
exist or some other error occursthen NULL isreturned. Tcl _Get Var and Tcl _Get -
Var 2 support the TCL_GLOBAL_ONLY and TCL_LEAVE_ERR_MSGflagsin the same
way as Tcl _Set Var . The following command procedure uses Tcl _Get Var and
Tcl _Set Var toimplement thei ncr command:

int IncrCd(ClientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {
int value, inc;
char *string;
if ((argc !'=2) &% (argc !'= 3)) {
interp->result = "wong # args";
return TCL_ERROR;

}
if (argc == 2) {
inc = 1;
} else if (Tcl _GetInt(interp, argv[2], & nc)
= TCL_OK) {
return TCL_ERRCR
}

string = Tcl _GetVar(interp, argv[1],
TCL_LEAVE_ERR MSG) ;
if (string == NULL) {
return TCL_ERRCR;

}
if (Tcl _GetInt(interp, string, &alue) != TCL_OK) {
return TCL_ERRCR

sprintf(interp->result, "%l", value + inc);
if (Tcl_SetVar(interp, argv[l], interp->result,
TCL_LEAVE_ERR M5G == NULL) {
return TCL_ERRCR;

}
return TCL_OK;
}
I ncr Cnd does very little work itself. It just calls library procedures and abortsiif errors
occur. Thefirst call to Tcl _Get | nt converts the increment from text to binary.

DRAFT (4/16/93): Distribution Restricted

296

Accessing Tcl Variables

324

Tcl _Get Var retrieves the original value of the variable, and another call to Tcl _Get -
I nt convertsthat value to binary. | ncr Cnd then adds the increment to the variable's
valueand callsspri nt f to convert the result back to text. Tcl _Set Var storesthis
valuein thevariable, and | ncr Crrd then returns the new value as its resullt.

Unsetting variables

32.5

Toremove avariable, call Tcl _Unset Var or Tcl _Unset Var 2. For example,

Tcl _Unset Var 2(interp, "population", "M chigan", 0);
will remove the element M chi gan from the array popul at i on. This statement has
the same effect as the Tcl command

unset popul ati on(M chi gan)

Tcl _Unset Var and Tcl _Unset Var 2 return TCL_ OKiif the variable was successfully
removed and TCL_ ERRORf the variable didn’t exist or couldn’t be removed for some
other reason. TCL_GLOBAL_ONLY and TCL_LEAVE_ERR MSGmay be specified as
flags to these procedures. If an array name is given without an element name then the
entire array is removed.

Setting and unsetting variable traces

Variable traces allow you to specify a C procedure to be invoked whenever avariableis
read, written, or unset. Traces can be used for many purposes. For example, in Tk you can
configure a button widget so that it displays the value of avariable and updates itself auto-
matically when the variable is modified. This feature isimplemented with variable traces.
You can also use traces for debugging, to create read-only variables, and for many other
puUrposes.

TheproceduresTcl _TraceVar andTcl _Tr aceVar 2 create variabletraces, asin
the following example:

Tcl _TraceVar(interp, "x", TCL_TRACE WRI TES, Wi teProc,
(CientData) NULL);

This creates awritetrace on variablex ini nt er p: Wi t ePr oc will be invoked when-
ever X ismodified. Thethird argument to Tcl _Tr aceVar isan OR’ed combination of
flag bits that select the operations to trace: TCL_ TRACE_READS for reads,
TCL_TRACE_WRI TES for writes, and TCL_ TRACE_UNSETS for unsets. In addition,
theflag TCL_GLOBAL_ONLY may be specified to force the variable name to be inter-
preted asglobal. Tcl _TraceVar and Tcl _Tr aceVar 2 normally return TCL_OK; if
an error occurs then they leave an error messageini nt er p- >r esul t and return
TCL_ERROR.

DRAFT (4/16/93): Distribution Restricted

32.6 Trace callbacks 297

32.6

Thelibrary procedures Tcl _Unt raceVar and Tcl _Unt r aceVar 2 remove vari-
able traces. For example, the following call will remove the trace set above:
Tcl _UntraceVar(interp, "x", TCL_TRACE WRI TES,
WiteProc, (CientData) NULL);
Tcl _Unt raceVar findsthe specified variable, looks for a trace that matches the flags,
trace procedure, and ClientData specified by its arguments, and removes the trace if it
exists. If no matching trace existsthen Tcl _Unt r aceVar does nothing. Tcl _Un-
traceVar and Tcl _Unt r aceVar 2 accept the sameflag bitsas Tcl _Tr aceVar.

Trace callbacks

Trace callback procedures such asW i t ePr oc in the previous section must match the
following prototype:
typedef char *Tcl VarTraceProc(CientData clientData,

Tcl _Interp *interp, char *nanmel, char *nane2,

int flags);
Thecl i ent Dat a andi nt er p arguments will be the same as the corresponding argu-
mentspassedto Tcl _TraceVar or Tcl _TraceVar 2. d i ent Dat a typically points
to a structure containing information needed by the trace callback. Nane1 and nane2
give the name of the variable in the same form as the argumentsto Tcl _Set Var 2.
FI ags consists of an OR’ed combination of bits. One of TCL_ TRACE READS,
TCL_TRACE _WRI TES, or TCL_TRACE_UNSETS is set to indicate which operation trig-
gered thetrace, and TCL_GLOBAL_ONLY isset if the variableis a global variable that
isn't accessible from the current execution context; the trace callback must pass this flag
back into procedures like Tcl _Get Var 2 if it wishes to access the variable. The bits
TCL_TRACE _DESTROYEDand TCL_| NTERP_DESTROYED are set in special circum-
stances described bel ow.

For read traces, the callback isinvoked just before Tcl _Get Var or Tcl _Get Var 2
returns the variabl€'s value to whomever requested it; if the callback modifies the value of
the variable then the modified value will be returned. For write traces the callback is
invoked after the variable's value has been changed. The callback can modify the variable
to override the change, and this modified value will be returned as the result of
Tcl _Set Var or Tcl _Set Var 2. For unset traces the callback isinvoked after the vari-
able has been unset, so the callback cannot access the variable. Unset callbacks can occur
when avariableis explicitly unset, when a procedure returns (thereby deleting all of its
local variables) or when an interpreter is destroyed (thereby deleting all of the variablesin
the interpreter).

A trace callback procedure can invoke Tcl _Get Var 2 and Tcl _Set Var 2 to read
and write the value of the traced variable. All traces on the variable are temporarily dis-
abled while the callback executes so callsto Tcl _Get Var 2 and Tcl _Set Var 2 will

DRAFT (4/16/93): Distribution Restricted

298

Accessing Tcl Variables

not trigger additional trace callbacks. As mentioned above, unset traces aren’t invoked
until after the variable has been deleted, so attempts to read the variable during unset call-
backs will fail. However, it is possible for an unset callback procedure to write the vari-
able, in which case a new variable will be created.

The code below sets awrite trace that prints out the new value of variablex each time
it ismodified:

Tcl _TraceVar (interp, "x", TCL_TRACE WRI TES, Print,
(CientData) NULL);

char *Print(CientData clientData,

Tcl _Interp *interp, char *nanmel, char *nane2,
int flags) {

char *val ue;

val ue = Tcl _GetVar2(interp, nanel, nane2,

flags & TCL_GLOBAL_ONLY);

if (value !'= NULL) {

printf("new value is %\n", value);

return NULL;
}
Pri nt Proc must passthe TCL_GLOBAL_ONLY hit of itsf | ags argument on to
Tcl _Get Var 2 in order to make sure that the variable can be accessed properly.
Tcl _Get Var 2 should never return an error, but Pri nt Pr oc checks for one anyway
and doesn't try to print the variable's value if an error occurs.

Trace callbacks normally return NULL values; anon-NULL value signals an error. In
this case the return value must be a pointer to a static string containing an error message.
The traced access will abort and the error message will be returned to whomever initiated
that access. For example, if the access was invoked by aset command or $-substitution
then a Tcl error will result; if the accesswasinvoked viaTcl _Get Var, Tcl _Get Var
will return NULL and also leave the error messageini nt er p- >r esul t if the
TCL_LEAVE_ERR MsSGflag was specified.

The code below uses atrace to make variable x read-only with value 192:

Tcl _TraceVar(interp, "x", TCL_TRACE WRI TES, Reject,
(dientData) "192");
char *Reject(CientData clientData, Tcl _Interp *interp,
char *namel, char *nanme2, int flags) {
char *correct = (char *) CientData;
Tcl _Set Var2(i nterp, nanel, nane2, correct,
flags & TCL_GLOBAL_QONLY);
return "variable is read-only";
i
Rej ect isatrace callback that'sinvoked whenever x iswritten. It returns an error mes-
sage to abort the write access. Since x has already been modified before Rej ect is

DRAFT (4/16/93): Distribution Restricted

32.7 Whole-array traces 299

32.7

invoked, Rej ect must undo the write by restoring the variabl€e’s correct value. The cor-
rect value is passed to the trace callback usingitscl i ent Dat a argument. Thisimple-
mentation allows the same procedure to be used as the write callback for many different
read-only variables; a different correct value can be passed to Rej ect for each variable.

Whole-array traces

32.8

You can create atrace on an entire array by specifying an array nameto Tcl _Tr aceVar
or Tcl _TraceVar 2 without an element name. This creates awhole-array trace: the call-
back procedure will be invoked whenever any of the specified operationsisinvoked on
any element of the array. If the entire array is unset then the callback will be invoked just
once, with nanmel containing the array name and nanme2 NULL.

Multiple traces

32.9

Multiple traces can exist for the same variable. When this happens, each of the relevant
callbacksisinvoked on each variable access. The callbacks are invoked in order from
most-recently-created to oldest. If there are both whole-array traces and individual ele-
ment traces, then the whole-array callbacks are invoked before element callbacks. If an
error is returned by one of the callbacks then no subsequent callbacks are invoked.

Unset callbacks

Unset callbacks are different from read and write callbacks in several ways. First of all,
unset callbacks cannot return an error condition; they must always succeed. Second, two
extraflags are defined for unset callbacks: TCL_TRACE DELETEDand

TCL_| NTERP_DESTROYED. When avariableis unset all of itstraces are deleted; unset
traces on the variable will still be invoked, but they will be passed the TCL_ TRACE_DE-
LETED flag to indicate that the trace has now been del eted and won't be invoked anymore.
If an array element is unset and there is awhole-array unset trace for the element’s array,
then the unset trace is not deleted and the callback will be invoked without the
TCL_TRACE_DELETEDflag set.

If the TCL_| NTERP_DESTROYEDflag is set during an unset callback it means that
theinterpreter containing the variable has been destroyed. In this case the callback must be
careful not to use the interpreter at all, since the interpreter’s state is in the process of
being deleted. All that the callback should do isto clean up its own internal data struc-
tures.

DRAFT (4/16/93): Distribution Restricted

300 Accessing Tcl Variables

32.10 Non-existent variables

Itislegal to set atrace on avariable that does not yet exist. The variable will continue to
appear not to exist (e.g. attemptsto read it will fail), but the trace’s callback will be
invoked during operations on the variable. For example, you can set aread trace on an
undefined variable and then, on the first access to the variable, assign it a default value.

32.11 Querying trace information

The proceduresTcl _Var Tracel nfo and Tcl _Var Tr acel nf 02 can be used to find
out if aparticular kind of trace has been set on avariable and if so to retrieve its Client-
Data value. For example, consider the following code:

ClientData clientData;

clientData = Tcl _VarTracelnfo(interp, "x", 0, Reject,
(CientData) NULL);
Tcl _Var Tr acel nf o will seeif thereisatrace on variable x that hasRej ect asits
trace callback. If so, it will return the ClientData value associated with the first (most
recently created) such trace; if not it will return NULL. Given the code in Section 32.6
above, this call will tell whether x isread-only; if so, it will return the variable’s read-only
value. If there are multiple traces on a variable with the same callback, you can step
through them all in order by making multiple callsto Tcl _Var Tr acel nf o0, asinthe

following code:
ClientData clientDat a;

clientData = NULL;
while (1) {
clientData = Tcl _VarTracel nfo(interp, "x", O,
Rej ect, clientData);
if (clientData == NULL) {
br eak;
}

... processtrace ...
}
Ineach call to Tcl _Var Tr acel nf o after thefirst, the previous ClientDatavalueis
passed in asthelast argument. Tcl _Var Tr acel nf o findsthe trace with thisvalue, then
returns the ClientData for the next trace. When it reaches the last trace it returns NULL.

DRAFT (4/16/93): Distribution Restricted

Chapter 33
Hash Tables

A hash tableis a collection ontries, where each entry consists dfey and avalue. No

two entries have the same k&jven a keya hash table can very quickly locate its entry

and hence the associated valug.cbntains a general-purpose hash table package that it
uses in several places internafpr example, all of the commands in an interpreter are
stored in a hash table where the key for each entry is a command name and the value is a
pointer to information about the command. All of the global variables are stored in another
hash table where the key for each entry is the name of a variable and the value is a pointer
to information about the variable.

Tcl exports its hash table facilities through a set of library procedures so that applica-
tions can use them too (seable 33.1 for a summary). The most common use for hash
tables is to associate names with objects. In order for an application to implement a new
kind of object it must give the objects textual names for useliocommands. When a
command procedure receives an object name agamant it must locate the C data
structure for the objectypically there will be one hash table for each type of object,
where the key for an entry is an object name and the value is a pointer to the C data struc-
ture that represents the object. When a command procedure needs to find an object it looks
up its name in the hash table. If there is no entry for the name then the command procedure
returns an error

For the examples in this chapter I'll use a hypothetical application that implements
objects called “gizmos”. Each gizmo is represented internally with a structure declared
like this:

typedef struct G znmo {
... fields of gizmo object ...
} G zno;

301

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

302

Hash Tables

Tcl _Ini t HashTabl e(Tcl _HashTabl e *tabl ePtr, int keyType)
Creates a new hash table and stores information about the table at
*t abl ePtr. KeyType iseither TCL_STRI NG_KEYS,
TCL_ONE_WORD_KEYS, or an integer greater than 1.

Tcl _Del et eHashTabl e(Tcl _HashTabl e *tabl ePtr)
Deletes all the entries in the hash table and frees up related storage.

Tcl _HashEntry *Tcl _Creat eHashEntry(Tcl _HashTabl e *tabl ePtr,

char *key,
int *newPtr)

Returns a pointer to theentry int abl ePt r whosekey iskey, creating a
new entry if needed. * NewPt r isset to 1if anew entry was created or O if
the entry already existed.

Tcl _HashEntry *Tcl _Fi ndHashEntry(Tcl _HashTabl e *tabl ePtr, char
*key)
Returns a pointer to theentry int abl ePt r whose key iskey, or NULL if
no such entry exists.

Tcl _Del et eHashEnt ry(Tcl _HashEntry *entryPtr)
Deletes an entry from its hash table.

ClientData Tcl _GetHashVal ue(Tcl _HashEntry *entryPtr)
Returns the value associated with a hash table entry.

Tcl _Set HashVal ue(Tcl _HashEntry *entryPtr, CientData val ue)
Sets the value associated with a hash table entry.

char *Tcl _Get HashKey(Tcl _HashEntry *entryPtr)
Returns the key associated with a hash table entry.

Tcl _HashEntry *Tcl _Fi rst HashEntry(Tcl _HashTabl e *tabl ePtr,
Tcl _HashSearch *searchPtr)

Starts a search through al the elements of a hash table. Storesinformation
about the search at * sear chPt r and returns the hash table'sfirst entry or
NULL if it has no entries.

Tcl _HashEntry *Tcl _Next HashEntry(Tcl _HashSearch *searchPtr)
Returnsthe next entry in the search identified by sear chPt r or NULL if all
entries in the table have been returned.

char *Tcl _HashStats(Tcl _HashTabl e *tabl ePtr)
Returns a string giving usage statistics for t abl ePt r. The string is dynam-
ically alocated and must be freed by the caller.

The application uses nameslike “gi zno42” to refer to gizmosin Tcl commands, where
each gizmo has a different number at the end of its name. The application follows the
action-oriented approach described in Section 27.3 by providing a collection of Tcl com-
mands to manipulate the objects, such asgcr eat e to create anew gizmo, gdel et e to
delete an existing gizmo, gsear ch to find gizmos with certain characteristics, and so on.

DRAFT (4/16/93): Distribution Restricted

33.1 Keys and values 303

33.1

Keys and values

33.2

Tcl hash tables support three different kinds of keys. All of the entriesin a single hash
table must use the same kind of key, but different tables may use different kinds. The most
common form of key isastring. In this case each key is a NULL-terminated string of arbi-
trary length, such as“gi znol18” or “WAst e not want not”. Different entriesina
table may have keys of different length. The gizmo implementation uses strings as keys.

The second form of key isaone-word value. In this case each key may be any value
that fitsin asingle word, such as an integer. One-word keys are passed into Tcl using val-
uesof type“char *” sothekeysare limited to the size of a character pointer.

Thelast form of key isan array. In this case each key is an array of integers (Ci nt
type). All keys in the table must be the same size.

The values for hash table entries are items of type Cl i ent Dat a, which are large
enough to hold either an integer or a pointer. In most applications, such as the gizmo
example, hash table values are pointers to records for objects. These pointers are cast into
d i ent Dat a items when storing them in hash table entries, and they are cast back from
d i ent Dat a to object pointers when retrieved from the hash table.

Creating and deleting hash tables

Each hash table is represented by a C structure of type Tcl _HashTabl e. Spacefor this
structure is alocated by the client, not by Tcl; typically these structures are global vari-
ables or elements of other structures. When calling hash table procedures you passin a
pointer toaTcl _HashTabl e structure as atoken for the hash table. You should never
use or modify any of thefieldsof aTcl _HashTabl e directly. Use the Tcl library proce-
dures and macros for this.

Here is how a hash table might be created for the gizmo application:

Tcl _HashTabl e gi znoTabl e;

Tel I ni t HashTabl e(&gi znoTabl e, TCL_STRI NG_KEYS) :

Thefirst argument to Tcl _I ni t HashTabl e isaTcl _HashTabl e pointer and the
second argument is an integer that specifies the sort of keysthat will be used for the table.
TCL_STRI NG_KEYS meansthat strings will be used in the table;
TCL_ONE_WORD VAL UES specifies one-word keys; and an integer value greater than
one means that keys are arrays with the given number of int’sin each array.
Tcl _I ni t HashTabl e ignores the current contents of thetableit is passed and re-ini-
tializes the structure to refer to an empty hash table with keys as specified.

Tcl _Del et eHashTabl e removes all the entries from a hash table and frees up
any memory that was allocated for the table (except space for the Tcl _HashTabl e

DRAFT (4/16/93): Distribution Restricted

304 Hash Tables
structure itself, which is the property of the client). For example, the following statement
could be used to delete the hash tableinitialized above:

Tcl _Del et eHashTabl e(&gi znoTabl e) ;
33.3 Creating entries

The procedure Tcl _Cr eat eHashEnt ry creates an entry with agiven key and
Tcl _Set HashVal ue setsthe value associated with the entry. For example, the code
below might be used to implement the gcr eat e command, which makes a new gizmo
object:
int GcreateCnd(d ientData clientData,
Tcl Interp *interp, int argc, char *argv[]) {
static int id = 1;
int new,
Tcl _HashEntry *entryPtr;
G zmo *gi znoPtr;
... check argc, etc ...
do {
sprintf(interp->result, "gizm%", id);
i d++;
entryPtr = Tcl _CreateHashEntry(&gi znoTabl e,
interp->result, &new);
} while (!new);
gi zmoPtr = (G zmo *) malloc(sizeof (G znp));
Tcl _Set HashVal ue(entryPtr, giznmoPtr);
... initialize * gizmoPtr, etc ...
return TCL_COX;
}
This code creates a name for the object by concatenating “gi zno” with the value of the
static variablei d. It storesthenameini nt er p- >r esul t so that the command’s result
will be the name of the new object. Gcr eat eCnd then incrementsi d so that each new
object will have aunique name. Tcl _Cr eat eHashEnt ry iscalled to create anew
entry with akey equal to the object’s name; it returns a token for the entry. Under normal
conditions there will not already exist an entry with the given key, in which case
Tcl _Creat eHashEnt ry setsnewto 1toindicatethat it created anew entry. However,
itispossiblefor Tcl _Cr eat eHashEnt ry to be called with akey that already existsin
thetable. In Gecr eat eCnd this can only happen if avery large number of objects are cre-
ated, sothat i d wraps around to zero again. If thishappensthen Tcl _Cr eat eHashEn-
try setsnew to O; Ger eat eCnd will try again with the next larger i d until it eventually
finds aname that isn't already in use.

DRAFT (4/16/93): Distribution Restricted

33.4 Finding existing entries 305

Note:

33.4

After creating the hash table entry Ger eat eCrd allocates memory for the object’s
record and invokes Tcl _Set HashVal ue to store the record address as the value of the
hash table entry. Tcl _Set HashVal ue isactualy a macro, not a procedure; itsfirst
argument is atoken for a hash table entry and its second argument, the new value for the
entry, can be anything that fitsin the space of aC i ent Dat a value. After setting the
value of the hash table entry Gcr eat eCrrd initializes the new object’s record.

Tcl’s hash tables restructure themsel ves as you add entries. A table won't use much
memory for the hash buckets when it has only a small humber of entries, but it will

increase the size of the bucket array as the number of entriesincreases. Tcl’s hash tables
should operate efficiently even with very large numbers of entries.

Finding existing entries

Theprocedure Tcl _Fi ndHashEnt ry locates an existing entry in ahash table. It issim-
ilarto Tcl _Cr eat eHashEnt ry except that it won’t create anew entry if the key
doesn’t already exist in the hash table. Tcl _Fi ndHashEnt ry istypically used to find
an object given its name. For example, the gizmo implementation might contain a utility
procedure called Get G znmo, which is something like Tcl _Get | nt except that it trans-
latesits string argument to aG zno pointer instead of an integer:
G zno *Get G zno(Tcl _Interp *interp, char *string) {
Tcl _HashEntry *entryPtr;
entryPtr = Tcl _Fi ndHashEntry(&gi znoTabl e, string);
if (entryPtr == NULL) {
Tcl _AppendResul t(interp, "no gizno naned \",
string, "\", (char *) NULL);
return TCL_ERRCR

}
return (G znmo *) Tcl _Get HashVal ue(entrypbtr);
}
CGet G zno looks up agizmo name in the gizmo hash table. If the name exists then Get -
G zno extracts the value from the entry using the macro Tcl _Get HashVal ue, con-
vertsittoaG zno pointer, and returnsit. If the name doesn’t exist then Get G zno
stores an error message ini nt er p- >r esul t and returns NULL.

Get G zno can beinvoked from any command procedure that needs to look up a
gizmo object. For example, suppose thereisacommand gt wi st that performs a“twist”
operation on gizmos, and that it takes a gizmo name as its first argument. The command
might be implemented like this:

int GwistCrd(CdientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
G znmo *gi znoPtr;
... check argc, etc ...

DRAFT (4/16/93): Distribution Restricted

306 Hash Tables

gi zmoPtr = GetG znmo(interp, argv[1]);
if (giznoPtr == NULL) {

return TCL_ERROR;
}

... performtwist operation ...

33.5 Searching

Tcl provides two procedures that you can use to search through al of the entriesin ahash
table. Tcl _Fi r st HashEnt r y starts a search and returns the first entry, and Tcl _N-
ext HashEnt r y returns successive entries until the search is complete. For example,
suppose that thereisagsear ch command that searches through all existing gizmos and
returns alist of the names of the gizmos that meet a certain set of criteria. This command
might be implemented as follows:
int GsearchCnd(d ientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
Tcl _HashEntry *entryPtr;
Tcl _HashSearch search;
G znmo *gi znmoPtr;
... process arguments to choose search criteria ...
for (entryPtr = Tcl _FirstHashEntry(&giznoTabl e,
&search); entryPtr != NULL;
entryPtr = Tcl _NextHashEntry(&search)) {
gi zmoPtr = (G zno *) Tcl _GetHashVal ue(entryPtr);
i f (...object satisfies search criteria...) {
Tcl _AppendE!l enent (i nterp,
Tcl _Get HashKey(entryPtr));
}
}
return TCL_CX;
}
A structure of type Tcl _HashSear ch isused to keep track of the search.
Tcl _Fi rst HashEnt ry initializesthis structureand Tcl _Next HashEnt r y usesthe
information in the structure to step through successive entriesin the table. It's possible to
have multiple searches underway simultaneously on the same hash table by using a differ-
ent Tcl _HashSear ch structure for each search. Tcl _Fi r st HashEnt ry returnsa
token for the first entry in the table (or NULL if thetableisempty) and Tcl _Next Hash-
Ent r y returns pointers to successive entries, eventually returning NULL when the end of
the tableis reached. For each entry Gsear chCnd extracts the value from the entry, con-
vertsittoa @ zno pointer, and seesiif that object meets the criteria specified in the com-
mand’s arguments. If so, then Gsear chCnd usesthe Tcl _Get HashKey macro to get

DRAFT (4/16/93): Distribution Restricted

33.6 Deleting entries 307

Note:

the name of the object (i.e. the entry’s key) and invokes Tcl _AppendEl errent to
append the nameto the interpreter’s result as alist element.

It is not safe to modify the structure of a hash table during a search. If you create or delete
entries then you should terminate any searches in progress.

33.6 Deleting entries
The procedure Tcl _Del et eHashEnt ry will delete an entry from a hash table. For
example, the following procedure uses Tcl _Del et eHashEnt ry to implement agde-
| et e command, which takes any number of arguments and del etes the gizmo objects they
name:
int GdeleteCnd(CientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
Tcl _HashEntry *entryPtr;
G znmo *gi znoPtr;
int i;
for (i = 1; i < argc; i++)
entryPtr = Tcl _Fi ndHashEntry(&gi znoTabl e,
argv[i]);
if (entryPtr == NULL) {
conti nue;
i;i zmoPtr = (G zno *) Tcl _HashGet Val ue(entryPtr);
Tcl _Del et eHashEntry(entryPtr);
... Clean up *gizmoPtr ...
free((char *) giznoPtr);
};et urn TCL_CK;
}
Gdel et eCnd checks each of its arguments to seeif it isthe name of a gizmo object. If
not, then the argument isignored. Otherwise Gdel et eCnd extracts a gizmo pointer from
the hash table entry and then calls Tcl _Del et eHashEnt r y to remove the entry from
the hash table. Then it performsinternal cleanup on the gizmo object if needed and frees
the object’s record.
33.7 Statistics

The procedure Tcl _HashSt at s returns a string containing various statistics about the
structure of ahash table. For example, it might be used to implement agst at command
for gizmos:

DRAFT (4/16/93): Distribution Restricted

308

Hash Tables

int GtatCnd(ClientData clientData, Tcl _Interp *interp,
int argc,

if (_argc = 1)

}

i nterp->result

return TCL_CK;

}

i nterp->result
return TCL_ERROR;

char *argv[]) {
{

"wong # args";

= Tcl _HashSt at s(&gi znoTabl e) ;
interp->freeProc = free;

The string returned by Tcl _HashSt at s isdynamically allocated and must be passed to

free; Gst at Cnd uses this string as the command'’s result, and then sets

i nterp->freeProc sothat Tcl will free the string.
The string returned by Tcl _HashSt at s containsinformation like the following:

1416 entries in table,

nunber
nunber
nunber
nunber
nunber
nunber
nunber
nunber
nunber
nunber
nunber

bility.

of
of
of
of
of
of
of
of
of
of
of

bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s
bucket s

wi th
with
with
with
wth
wi th
wi th
with
with
with
wth

1024 buckets

entri
entri
entri
entri
entri
entri
entri
entri
entri
entri

CoOo~NOOUIT~WNEFO

es:
es:
es:
es:
es:
es:
es:
es:
es:
es:

60
591
302
67

ooooowu

nore than 10 entries: O

average search distance for entry: 1.4
You can use this information to see how efficiently the entries are stored in the hash table.
For example, the last line indicates the average number of entriesthat Tcl will have to
check during hash table lookups, assuming that all entries are accessed with equal proba-

DRAFT (4/16/93): Distribution Restricted

Chapter 34
String Utilities

This chapter describe<ITs library procedures for manipulating strings, including a
dynamic string mechanism that allows you to build up arbitrarily long strings, a procedure
for testing whether a command is complete, and a procedure for doing simple string
matching. Bble 34.1 summarizes these procedures.

Note: None of the dynamic string facilities are available in versions of Tcl earlier than 7.0.

34.1 Dynamic strings

A dynamic string is a string that can be appended to without bound. As you append infor-
mation to a dynamic stringclfautomatically grows the memory area allocated for it. If
the string is short thencTavoids dynamic memory allocation altogether by using a small
static bufer to hold the string.d provides five procedures for manipulating dynamic
strings:

Tcl _DStringl ni t creates a new empty string;

Tcl _DSt ri ngAppend adds characters to a dynamic string;

Tcl _DSt ri ngAppendEl enent adds a new list element to a dynamic string;

Tcl _DSt ri ngFr ee releases any storage allocated for a dynamic string and reinitial-
izes the string;

andTcl _DSt ri ngResul t moves the value of a dynamic string to the result string
for an interpreter and reinitializes the dynamic string.

309

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

310

String Utilities

Tcl _DStringlnit(Tcl _DString *dsPtr)

char *Tcl _DStringAppend(Tcl _DString *dsPtr, char *string, int

char *Tcl _DStringAppendEl enent (Tcl _DString *dsPtr, char *string)

Tcl _DStringFree(Tcl _DString *dsPtr)

Tcl _DStringResul t(Tcl _Interp *interp, Tcl_DString *dsPtr)

Initializes* dsPt r to an empty string (previous contents of *dsPt r are
discarded without cleanup).

| engt h)

Appends| engt h bytesfrom st ri ng to dsPt r 'svalue and returns new
vaueof dsPtr. If | engt h islessthan zero, appendsall of st ri ng upto
terminating NULL character.

Convertsst ri ng to proper list element and appendsto dsPt r 'svalue
(with separator space If needed). Returns new value of dsPt r.

Frees up any memory allocated for dsPt r and reinitializes* dsPt r to an
empty string.

Movesthevaueof dsPtr toi nt er p- >resul t and reinitializesdsP-
t r 'svalue to an empty string.

i nt Tcl _ConmmandConpl et e(char *cnd)

Returns 1 if cmd holds one or more complete commands, O if the last com-
mand in cnd isincomplete due to open braces etc.

int Tcl _StringMwatch(char *string, char *pattern)

Returns 1 if st ri ng matches pat t er n using glob-style rules for pattern
matching, O otherwise.

The code below uses all of these procedures to implement anmap command, which
takes alist and generates a new list by applying some operation to each element of the
origina list. Map takes two arguments: alist and a Tcl command. For each element in the
list, it executes the given command with the list element appended as an additional argu-
ment. It takes the results of all the commands and generates a new list out of them, and
then returnsthislist asits result. Here are some exmples of how you might use the map
command:

proc inc x {expr $x+1}
map {4 18 16 19 -7} inc
519 17 20 -6

proc addz x {return "$x z"}
map {a b {a b c}} addz

{a z} {b z} {abc z}

Here isthe command procedure that implements map:

int MapCrd(CientData clientData, Tcl _Interp *interp,
int argc, char *argv[]) {

DRAFT (4/16/93): Distribution Restricted

34.1 Dynamic strings 311

Tcl _DString conmand, newLi st;

int listArgc, i, result;

char **|istArgv;

if (argc !'= 3) {
interp->result = "wong # args"”;
return TCL_ERRCR

}
if (Tel_SplitList(interp, argv[1l], & istArgc,
&istArgv) !'= TCL_OK) {
return TCL_ERRCR
}
Tcl _DStringlnit(&ewlist);
Tcl _DStringlnit(&ommand);
for (i =0; i <IlistArgc; i++) {
Tcl _DStringAppend(&omand, argv[2], -1);
Tcl _DStri ngAppendEl enent (&commrand,
listArgv[i]);
result = Tcl _Eval (interp, command. string);
Tcl _DStri ngFree(& omrand) ;
if (result '= TCL_OK) {
Tcl _DStri ngFree(&ewli st) ;
free((char *) listArgv);
return result;

}
Tcl _DStri ngAppendEl enent (&newli st ,

interp->result);

}rcl _DStringResult(interp, &newlist);

free((char *) listArgv);

return TCL_COK;

}
MapCrd uses two dynamic strings. One holds the result list and the other holds the com-
mand to execute in each step. The first dynamic string is needed because the length of the
command is unpredictable, and the second one is needed to store the result list asit builds
up (thisinformation can’t be placed immediately ini nt er p- >r esul t because the
interpreter’sresult will be overwritten by the command that’s eval uated to process the next
list element). Each dynamic string is represented by a structure of type Tcl _DSt ri ng.
The structure holds information about the string such as a pointer to its current value, a
small array to use for small strings, and alength. The only field that you should ever
accessisthest ri ng field, which is a pointer to the current value. Tcl doesn’t allocate
Tcl _DSt ri ng structures; it's up to you to allocate the structure (e.g. asalocal variable)
and pass its address to the dynamic string library procedures.
After checking its argument count, extracting all of the elements from the initial list,

and initializing its dynamic strings, MapCnd enters aloop to process the elements of the

DRAFT (4/16/93): Distribution Restricted

312

String Utilities

34.2

list. For each element it first creates the command to execute for that element. It doesthis
by calling Tcl _DSt r i ngAppend to append the part of the command provided in
argv[2] ,thenitcalsTcl DSt ri ngAppendEl ermrent to append thelist element as
an additional argument. These procedures are similar in that both add new information to
the dynamic string. However, Tcl _DSt r i ngAppend adds the information as raw text
whereas Tcl _DSt ri ngAppendEl enent convertsits string argument to a proper list
element and adds that list element to the dynamic string (with a separator space, if
needed). It’simportant to use Tcl _DSt r i ngAppendE!l ermrent for the list element so
that it becomes a single word of the Tcl command being formed. If Tcl _DSt r i ngAp-
pend were used instead and the element were“a b c¢” asin the example on page 310,
then the command passedto Tcl _Eval wouldbe“addz a b c¢”, which would result
in an error (too many argumentsto theaddz procedure). When Tcl _DSt ri ngAppen-
dEl enent isused thecommandis“addz {a b c}”, which parses correctly.

Once MapCnd has created the command to execute for an element, it invokes
Tcl _Eval to evaluate the command. The Tcl _DSt ri ngFr ee call freesup any mem-
ory that was allocated for the command string and resets the dynamic string to an empty
value for use in the next command. If the command returned an error then MapCrrd
returns that same error; otherwiseit usesTcl _DSt ri ngAppendE!l enent to add the
result of the command to the result list as anew list element.

MapCnd callsTcl _DSt ri ngResul t after al of the list elements have been pro-
cessed. Thistransfers the value of the string to the interpreter’s result in an efficient way
(e.g. if the dynamic string uses dynamically allocated memory then Tcl _DSt r i ngRe-
sul t just copiesapointer totheresulttoi nt er p- >r esul t rather than allocating new
memory and copying the string).

Before returning, MapCrd must be sure to free up any memory alocated for the
dynamic strings. It turns out that this has already been done by Tcl _DSt r i ngFr ee for
command and by Tcl _DStri ngResul t for newLi st .

Command completeness

When an application isreading commands typed interactively, it'simportant to wait until a
complete command has been entered before evaluating it. For example, suppose an appli-
cation is reading commands from standard input and the user types the following three
lines:
foreach i {1 2 3 4 5} {
puts "$i*$i is [expr $i*$i]"
}

If the application reads each line separately and passesitto Tcl _Eval ,a“mi ssi ng

cl ose- brace” error will be generated by thefirst line. Instead, the application should
collect input until all the commands read are complete (e.g. there are no unmatched braces

DRAFT (4/16/93): Distribution Restricted

34.3 String matching 313

34.3

or quotes) then execute al of the input as a single script. The procedure Tcl _Commrand-
Conpl et e makesthis possible. It takes a string as argument and returns 1 if the string
contains syntactically complete commands, O if the last command isn’t yet complete.

The C procedure below uses dynamic stringsand Tcl _ConmandConpl et e to read
and evaluate a command typed on standard input. It collects input until all the commands
read are complete, then it eval uates the command(s) and returns the completion code from
the evaluation. It usesTcl _Recor dAndEval to evaluate the command so that the com-
mand is recorded on the history list.

int DoOneCnd(Tcl _Interp *interp) {

char |ine[200];
Tcl _DString cnd;

int result;
Tcl _DStringlnit(&nd);
while (1) {
if (fgets(line, 200, stdin) == NULL) {
br eak;

}

Tcl _DStringAppend(&cnd, line, -1);

if (Tcl_CommandConpl ete(cnd. string)) {
br eak;

}

}

result = Tcl _RecordAndEval (interp, cnd.string, 0);

Tcl _DStringFree(&) ;

return result;

}

In the example of the previous page DoOneCnd will collect all three lines before evaluat-
ing them. If an end-of-file occursf get s will return NULL and DoOneCnd will evaluate
the command even if it isn’t complete yet.

String matching

The procedure Tcl _St ri ngMat ch provides the same functionality asthe“st ri ng
mat ch” Tcl command. Given astring and a pattern, it returns 1 if the string matches the
pattern using glob-style matching and O otherwise. For example, here is acommand pro-
cedurethat usesTcl _St ri nghat ch toimplement| sear ch. It returnsthe index of the
first element in alist that matches a pattern, or - 1 if no element matches:

int LsearchCrd(ClientData clientData,
Tcl _Interp *interp, int argc, char *argv[]) {
int listArgc, i, result;
char **|istArgv;
if (argc !'= 3) {

DRAFT (4/16/93): Distribution Restricted

314

String Utilities

interp->result = "wong # args";
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1l], & istArgc,
&istArgv) !'= TCL_OK) {
return TCL_ERRCR;

result = -1;
for (i =0; i <listArgc; i++) {
if (Tcl _StringMatch(listArgv[i], argv[2])) {
result =i;
br eak;

}

sprintf(interp->result, "%", result);
free((char *) listArgv);
return TCL_COXK;

DRAFT (4/16/93): Distribution Restricted

Chapter 35
POSI X Utilities

35.1

This chapter describes several utilities that you may find useful if you use POSIX system
calls in your C code. The procedures can be used to expanatation in file names, to
generate messages for POSIX errors and signals, and to manage sub-procesable See T
35.1 for a summary of the procedure.

Tilde expansion

Tcl and Tk allow you to use notation when specifying file names, and if you write new
commands that manipulate files then you should support tildes also. For example, the
command

open ~ouster/.login
opens the file named ogi n in the home directory of useust er, and
open ~/.login
opens a file named ogi n in the home directory of the current user (as given by the
HOVE environment variable). Unfortunatebjides are not supported by the POSIX sys-
tem calls that actually open files. For example, in thedjppehh command above the name
actually presented to tlopen system call must be something like
/users/ouster/.login

where~oust er has been replaced byhe home directory fasust er. Tcl _Ti | deS-
ubst is the procedure that carries out this substitution. It is used internallyt bpd Tk

315

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

316 POSIX Utilities

char *Tcl _Til deSubst(Tcl _Interp *interp, char *nane,
Tcl _DString *resultPtr)

If nane starts with ~, returns a new name with the ~ and following charac-
ters replaced with the corresponding home directory name. If nanme doesn’t
start with ~, returnsname. Uses*r esul t Pt r if needed to hold new name
(caller need not initialize* r esul t Pt r, but must freeit by calling Tcl _D-
St ri ngFr ee). If an error occurs, returns NULL and leaves an error mes-
sageini nterp->result.

char *Tcl _Posi xError(Tcl _Interp *interp)
Setstheer r or Code variableini nt er p based on the current value of
er r no, and returns a string identifying the error.
char *Tcl _Errnol d(voi d)
Returns a symbolic name corresponding to the current value of er r no, such
as ENCENT.
char *Tcl _Signal Id(int siag)
Returns the symbolic name for si g, such as SI G NT.
char *Tcl _Si gnal Msg(int sig)
Returns a human-readable message describing signal si g.

int Tcl _CreatePipeline(Tcl _Interp *interp, int argc, char

*argv([],

int **pidPtr, int *inPipePtr, int *outPipePtr, int *errFi-
lePtr)
Creates a process pipeline, returns a count of the number of processes cre-
ated, and stores at * pi dPt r the address of amal | oc-ed array of process
identifiers. If an error occurs, returns- 1 and leaves an error message in
i nterp->result.lnPipePtr,outPipePtr,anderrFil ePtr are
used to control default I/O redirection (see text for details).

Tcl _Det achPi ds(int nunPids, int *pidPtr)
Passes responsibility for nunPi ds at * pi dPt r to Tcl: Tcl will alow them
to run in backround and reap them in some future call to Tcl _ReapDe-
t achedPr ocs.

Tcl _ReapDet achedPr ocs(voi d)
Checksto seeif any detached processes have exited; if so, cleans up their
state.

to process file names before using them in system calls, and you may find it useful if you
write C code that deals with POSIX files.
For example, the implementation of the open command contains code something
like the following:
int fd;
Tcl _DString buffer;
char *ful | Nane;

DRAFT (4/16/93): Distribution Restricted

35.2 Generating messages 317

35.2

fullName = Tcl_TildeSubst(interp, argv[1], &buffer);
if (fullName == NULL) {
return TCL_ERROR,;

}
fd = open(fullName, ...);
Tcl_DStringFree(fullName);

Tcl_TildeSubst takes as arguments an interpreter, a file name that may start with a
tilde, and a dynamic string. It returns a new file name, which is either the original name (if
it didn’t start with ~), anew tilde-expanded name, or NULLIf an error occurred; in the last
case an error message is left in the interpreter’s result.

If Tcl_TildeSubst has to generate a new name, it uses the dynamic string given
by itsfinal argument to store the name. When Tcl_TildeSubst is called the dynamic
string should either be uninitialized or empty. Tcl_TildeSubst initializes it and then
usesit for the new name if needed. Once the caller has finished using the new file name it
must invoke Tcl_DStringFree to release any memory that was allocated for the
dynamic string.

Generating messages

When an error or signal occursin the C code of a Tcl application, the application should
report the error or signal back to the Tcl script that triggered it, usually asaTcl error. To do
this, information about the error or signal must be converted from the binary form used in
Ctoastring form for usein Tcl scripts. Tcl provides four procedures to do this:
Tcl_PosixError , Tcl_Erronld , Tcl_Signalld , and Tcl_SignalMsg

Tcl_PosixError providesasimple“all in one” mechanism for reporting errorsin
system calls. Tcl_PosixError examines the C variable errno to determine what
kind of error occurred, then it calls Tcl_SetErrorCode to set the errorCode vari-
able appropriately and it returns a human-readable string suitable for use in an error mes-
sage. For example, consider the following fragment of code, which might be part of a
command procedure:

FILE *f;

f = fopen("prolog.ps", "r");
if (f == NULL) {
char *msg = Tcl_PosixError(interp);
Tcl_AppendResult(interp,
“"couldn’t open prolog.ps: ", msg,
(char *) NULL);
return TCL_ERROR,;

DRAFT (4/16/93): Distribution Restricted

318

POSIX Utilities

35.3

If the file doesn’t exist or isn’t readable then an error will occur when fopen invokesa
system call to open thefile. An integer code will be stored intheerrno variable to iden-
tify the error and fopen will return anull pointer. The above code detects such errors and
invokes Tcl_PosixError . If thefile didn’t exist then Tcl_PosixError will set
errorCode to

POSIX ENOENT {no such f ile or directory}

and return the string “no such f ile or directory ". The code above incorporates
Tcl_PosixError 'sreturn value into its own error message, which it storesin
interp->result . In the case of an non-existent file, the code above will return
“couldn’t open prolog.ps: no such f ile or directory " asitserror
message.

Tcl_Errmold takesno argumentsand returnsthe official POSIX namefor the error
indicated by errno . The names are the symbolic ones defined in the header file
errno.h . For example, if errno 'svalueisENOENThen Tcl_Errnold will return
the string “ENOENT. The return valuefrom Tcl_Errnold isthe same asthe value that
Tcl_PosixError will store in the second element of errorCode

Tcl_Signalld and Tcl_SignalMsg each take a POSIX signal number as argu-
ment, and each returns a string describing the signal. Tcl_Signalld returns the official
POSIX namefor the signal asdefinedinsignal.h , and Tcl_SignalMsg returnsa
human-readable message describing the signal. For example,

Tcl_Signalld(SIGILL)
returns the string “SIGILL ", and
Tcl_SignalMsg(SIGILL)
returns “illegal instruction

Creating subprocesses

Tcl_CreatePipeline is the procedure that does most of the work of creating
subprocesses for exec and open . It creates one or more subprocesses in a pipeline con-
figuration. It has the following arguments and result:

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc,

char *argv[], int **pidPtr, int *inPipePtr,

int *outPipePtr, int *errFilePtr)
Theargc andargv arguments describe the commands for the subprocesses in the same
form they would be specified to exec . Each string in argv becomes one word of one
command, except for specia stringslike“>" and“| ” that are used for 1/O redirection and
separators between commands. Tcl_CreatePipeline normally returns a count of the
number of subprocesses created, and it storesat *pidPtr apointer to an array containing
the process identifiers for the new processes. The array is dynamically allocated and must

DRAFT (4/16/93): Distribution Restricted

35.4 Background processes 319

35.4

be freed by the caller by passing ittof r ee. If an error occurred while spawning the sub-
processes (e.g. ar gc and ar gv specified that output should be redirected to afile but the
file couldn’t be opened) then Tcl _Cr eat ePi pel i ne returns- 1 and leaves an error
messageini nt er p- >resul t.

The last three argumentsto Tcl _Cr eat ePi pel i ne are used to control 1/0 to and
from the pipelineif ar gv and ar gc don't specify 1/O redirection. If these arguments are
NULL then the first process in the pipeline will takes its standard input from the standard
input of the parent, the last process will write its standard output to the standard output of
the parent, and all of the processes will use the parent’s standard error channel for their
error message. If i nPi pePt r isnot NULL then it pointsto an integer; Tcl _Cr e-
at ePi pel i ne will create a pipe, connect its output to the standard input of the first sub-
process, and store awritable file descriptor for itsinput at *i nPi pePtr. If
out Pi pePtr isnot NULL then standard output goes to a pipe and a read descriptor for
thepipeisstored at * out Pi pePtr.If errFi |l ePtr isnot NULL then Tcl _Cre-
at ePi pel i ne createsatemporary file and connects the standard error filesfor all of the
subprocesses to that file; a readable descriptor for the filewill be stored at *er r Fi -
| ePtr.Tcl _Creat ePi pel i ne removesthefile beforeit returns, so the file will only
exist aslong asit is open.

If ar gv specifiesinput or output redirection then this overrides the requests made in
the argumentsto Tcl _Cr eat ePi pel i ne. For example, if ar gv redirects standard
input then no pipeis created for standard input; if i NPi pePt r isnot NULL then- 1 is
stored at *i nPi pePt r toindicate that standard input was redirected. If ar gv redirects
standard output then no pipeis created for it; if out Pi pePt r isnot NULL then- 1 is
stored at * out Pi pePt r. If ar gv redirects some or all of the standard error output and
errFil ePtr isnot NULL, thefilewill till be created and a descriptor will be returned,
even though it’s possible that no messages will actually appear in the file.

Background processes

Tcl _Det achPi ds and Tcl _ReapDet achedPr ocs are used to keep track of
processes executing in the background. If an application creates a subprocess and aban-
donsit (i.e. the parent never invokes a system call to wait for the child to exit), then the
child executes in background and when it exits it becomes a“zombie”. It remains azom-
bie until its parent officially waitsfor it or until the parent exits. Zombie processes occupy
space in the system’s process table, so if you create enough of them you will overflow the
process table and make it impossible for anyone to create more processes. To keep this
from happening, you must invoke a system call such aswai t pi d, which will return the
exit status of the zombie process. Once the status has been returned the zombie relin-
quishesits dot in the process table.

In order to prevent zombies from overflowing the process table you should pass the
process identifiers for background processesto Tcl _Det achPi ds:

DRAFT (4/16/93): Distribution Restricted

320

POSIX Utilities

Tcl _DetachPi ds(int nunmPids, int *pidPtr)

The pi dPt r argument pointsto an array of processidentifiers and nunPi ds givesthe
size of the array. Each of these processes now becomes the property of Tcl and the caller
should not refer to them again. Tcl will assume responsibility for waiting for the processes
after they exit.

In order for Tcl to clean up background processes you may need to call Tcl _Reap-
Det achedPr ocs fromtimetotime. Tcl _ReapDet achedPr ocs invokesthe
wali t pi d kernel call on each detached process so that its state can be cleaned up if it has
exited. If some of the detached processes are still executing then Tcl _ReapDet ached-
Pr ocs doesn't actually wait for them to exit; it only cleans up the processes that have
already exited. Tcl automatically invokes Tcl _ReapDet achedPr ocs each time
Tcl _Creat ePi pel i ne isinvoked, so under normal circumstances you won't ever
need to invoke it. However, if you create processes without calling Tcl _Cr eat ePi pe-
I i ne (e.g. by invoking thef or k system call) and subsequently pass the processes to
Tcl _Det achPi ds, then you should also invoke Tcl _ReapDet achedPr ocs from
time to time. For example, agood placeto call Tcl _ReapDet achedPr ocs isinthe
code that creates new subprocesses.

DRAFT (4/16/93): Distribution Restricted

