Tcl and the Tk Toolkit

John K. Ousterhout
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley CA 94720

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal
use only Any other form of duplication or reproduction requires prior written permis-
sion of the author or publishérhis statement must be easily visible on the first page
of any reproduced copies. The publisher does riet wfarranties in regard to this
draft.

Note to readers:

This manuscript is a partial draft of a book to be published in early 1994 by Addison-
Wesley (ISBN 0-201-63337-X). Addisonéaley has given me permission to make
drafts of the book available to thelEommunity to help meet the need for introduc-
tory documentation oncland Tk until the book becomes available. Please observe
the restrictions set forth in the copyright notice above: you're welcome to make a
copy for yourself or a friend but any sort ofgarscale reproduction or reproduction

for profit requires advance permission from Addisoas\&y

| would be happy to receive any comments you might have on this draft; send them to
me via electronic mail atust er @s. ber kel ey. edu. I'm particularly interested

in hearing about things that you foundfidifilt to learn or that werenadequately
explained in this document, but I'm also interested in hearing about inaccuracies,
typos, or any other constructive criticism you might have.

DRAFT (8/12/93): Distribution Restricted

Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Organization of thebook 3
1.3 Notation 4

Chapter 2 An Overview of Tcland Tk 5
2.1 Getting started 5
2.2 Heloworldwith Tk 7
2.3 Scriptfiles 9
2.4 Variables and substitutions 10
2.5 Control structures 11
2.6 Eventbindings 13
2.7 Subprocesses 15
2.8 Additiona featuresof Tcl and Tk 18

2.9 Extensionsand applications 18

2.9.1 Expect 19

2.9.2 Extended Tcl 19

293 XF 20

2.9.4 Distributed programming 20
295 Ak 22

Chapter 3 Tcl Language Syntax 25
3.1 Scripts, commands, and words 25
3.2 Evaluatingacommand 26
3.3 Variable substitution 28
3.4 Command substitution 29
3.5 Backslash substitution 30
3.6 Quoting with double-quotes 30
3.7 Quoting with braces 32
3.8 Comments 33
3.9 Normal and exceptiona returns 33
3.10 Moreon substitutions 34

DRAFT (8/12/93): Distribution Restricted

Chapter 4 Variables 37
4.1 Simplevariables and the set command 37
42 Arrays 38

4.3 Variable substitution 39

4.4 Removing variables: unset 40

45 Multi-dimensiona arrays 41

4.6 Theincr and append commands 41
4.7 Preview of other variable facilities 42

Chapter 5 Expressions 43

5.1 Numeric operands 43

5.2 Operatorsand precedence 44

5.2.1 Arithmetic operators 44
5.2.2 Relational operators 46
5.2.3 Logical operators 46
5.2.4 Bitwise operators 46
5.2.5 Choice operator 46

5.3 Math functions 47

5.4 Subgtitutions 47

5.5 String manipulation 49
5.6 Typesand conversions 49
5.7 Precison 50

Chapter 6 Lists 51
6.1 Basic list structure and the lindex command 51
6.2 Creating lists: concat, list, and llength 53
6.3 Maodifying lists: linsert, Ireplace, Irange, and lappend 54
6.4 Searching lists: Isearch 56
6.5 Sorting lists: Isort 56
6.6 Converting between strings and lists: split and join 57
6.7 Listsand commands 58

DRAFT (8/12/93): Distribution Restricted

Chapter 7 Control Flow 61
7.1 Theif command 61
7.2 Looping commands: while, for, and foreach 63
7.3 Loop control: break and continue 65
7.4 Theswitch command 65
75 Eva 67
7.6 Executing from files: source 68

Chapter 8 Procedures 69
8.1 Procedure basics: proc and return 69
8.2 Loca and global variables 71
8.3 Defaults and variable numbers of arguments 72
8.4 Call by reference: upvar 73
8.5 Creating new control structures: uplevel 74

Chapter 9 Errors and Exceptions 77
9.1 What happens after an error? 77
9.2 Generating errorsfrom Tcl scripts 79
9.3 Trapping errorswith catch 80
9.4 Exceptionsingeneral 81

Chapter 10 String Manipulation 85
10.1 Glob-style pattern matching 85
10.2 Pattern matching with regular expressions 88
10.3 Using regular expressions for substitutions 90
10.4 Generating stringswith format 91
10.5 Parsing stringswith scan 93
10.6 Extracting characters: string index and string range 94
10.7 Searching and comparison 94
10.8 Length, case conversion, and trimming 95

DRAFT (8/12/93): Distribution Restricted

Chapter 11

Chapter 12

Chapter 13

Chapter 14

111
11.2
11.3
114
115
11.6
11.7
11.8

121
122
12.3
124
125

131
13.2

133
134
135
13.6
13.7

141

Accessing Files 97

Filenames 97

Basicfilel/O 99

Output buffering 101

Random accesstofiles 101

The current working directory 102
Manipulating file names: glob and file 102
Fileinformation commands 105

Errorsin system calls 107

Processes 109

Invoking subprocesses with exec 109

I/0 to and from acommand pipeline 112
Processids 113

Environment variables 113

Terminating the Tcl process with exit 113

Managing Tcl Internals 115
Querying the elements of an array 115

Theinfocommand 117

13.2.1 Information about variables 117
13.2.2 Information about procedures 120
13.2.3 Information about commands 121
13.2.4 Tclversion and library 122

Timing command execution 122
Tracing operationson variables 123
Renaming and deleting commands 125
Unknown commands 126
Auto-loading 128

History 131
Thehistory list 131

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events 133

14.3 Re-executing commands from the history list 133
14.4 Shortcuts implemented by unknown 134

14.5 Current event number: history nextid 134

DRAFT (8/12/93): Distribution Restricted

DRAFT (8/12/93): Distribution Restricted

Chapter 1
| ntroduction

11

Introduction

This book is about two packages calleldnd Tk. Dgether they provide a programming
system for developing and using graphical user interface (GUI) applicatmssaids
for “tool command language” and is pronounced “tickle”; is a simple scripting language
for controlling and extending applications. It provides generic programming facilities that
are useful for a variety of applications, such as variables and loops and procedures. Fur-
thermore, Tl is embeddable: its interpreter is implemented as a library of C procedures
that can easily be incorporated into applications, and each application can extend the core
Tcl features with additional commands specific to that application.

One of the most useful extensions @i Tk. It is a toolkit for the X Widow Sys-
tem, and its name is pronounced “tee-kay”. Tk extends the cbfacilities with addi-
tional commands for building user interfaces, so that you can construct Motif user
interfaces by writing @l scripts instead of C code. LikelTTk is implemented as a library
of C procedures so it too can be used in marfgréifit applications. Individual applica-
tions can also extend the base Tk features with newintseface widgets and geometry
managers written in C.

Togethey Tcl and Tk provide four benefits to application developers and users. First,
Tcl makes it easy for any application to have a powerful scripting language. All that an
application needs to do is to implement a few nelxc@mmands that provide the basic
features of that application. Then the application can be linked wittctlt&rpreter to
produce a full-function scripting language that includes both the commands provided by
Tcl (called theTcl core) and those implemented by the application (see Figure 1.1).

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

Introduction

Tcl Library Application
Tcl Application
Interpreter Data Structures
[o Qaaa
Built-in Commands Application Command

Figure 1.1. To create a new application based ah @n application developer designs new C
structures specific to that application and writes C code to implement a fevelneymimands. Th
Tcl library provides everything else that is needed to produce a fully programmable comma
language. The application can then be modified and extended by wadtiscyipts.

For example, an application for reading electronic bulletin boards might contain C
code that implements onellcommand to query a bulletin board for new messages and
another Tl command to retrieve a given message. Once these commandsoesistpls
can be written to cycle through the new messages from all the bulletin boards and display
them one at a time, or keep a record in disk files of which messages have been read and
which havert, or search one or more bulletin boards for messages on a particular topic.
The bulletin board application would not have to implement any of these additional func-
tions in C; they could all be written aslBcripts, and users of the application could write
additional Tl scripts to add more functions to the application.

The second benefit otlfand Tk is rapid development. For example, many interest-
ing windowing applications can be written entirely aksEtripts with no C code at alll,
using a windowing shell callesi sh. This allows you to program at a much higher level
than you would in C or C++, and many of the details that C programmers must address are
hidden from you. Compared to toolkits where you program entirely in C, such as Xt/

Motif, there is much less to learn in order to uskahd Tk and much less code to write.

New Tcl/Tk users can often create interesting user interfaces after just a few hours of
learning, and many people have reported ten-fold reductions in code size and development
time when they switched from other toolkits td &nd Tk.

Another reason for rapid development withh and Tk is that @l is an interpreted lan-
guage. When you use alBpplication such asi sh you can generate and execute new
scripts on-the-fly without recompiling or restarting the application. This allows you to test
out new ideas and fix bugs very rapidince Tl is interpreted it executes more slowly
than compiled C code, of course, but modern workstations are surprisingly fast. For exam-
ple, you can execute scripts with hundreds or even thousandkamiiimands on each
movement of the mouse with no perceptible ddiayhe rare cases where performance
becomes an issue, you can re-implement the most performance-critical parts afl your T
scripts in C.

DRAFT (8/12/93): Distribution Restricted

1.2 Organization of the book 3

1.2

The third benefit of @l is that it makes an excellent “glue language”. Because it is
embeddable, it can be used for manjedént purposes in many fifent programs. Once
this happens, it becomes possible to writes€Eripts that combine the features of all the
programs. For example, any windowing application based on Tk can isslscaift to
any other Tk application. This feature makes multi-mede&ctf much more accessible:
once audio and video applications have been built with Tk (and there exist several
already), any Tk application can issue “record” and “play” commands to them. In addi-
tion, spreadsheets can update themselves from database applicatieinserisee edi-
tors can modify the appearance and behavior of live applications as they run, and so on.
Tcl provides theingua franca that allows application to work together

The fourth benefit of dl is user convenience. Once a user leachadd Tk, he or she
can write scripts for anycTand Tk application merely by learning the few application-
specific commands for the new application. This should make it possible for more users to
personalize and enhance their applications.

Organization of the book

Chapter 2 uses several simple scripts to provide a quick overview of the most important
features of €l and Tk. It is intended to give you the flavor of the systems and convince
you that they are useful without explaining anything in detail. The remainder of the book
goes through everything again in a more comprehensive fashion. It is divided into four
parts:

¢ Part | introduces the d scripting language. After reading this section you will be able
to write scripts for €l applications.

* Part Il describes the additionatlfcommands provided by Tk, which allow you to cre-
ate useiinterface widgets such as menus and scrollbars and arrange them in windowing
applications. After reading this section you'll be able to create new windowing applica-
tion aswi sh scripts and write scripts to enhance existing Tk applications.

* Part |1l discusses the C procedures in thHibrary and how to use them to create new
Tcl commands. After reading this section you'll be able to write nepdckages and
applications in C.

* Part |V describes TIs library procedures. After reading this section you'll be able to
create new widgets and geometry managers in C.

Each of these major parts contains about ten short chapters. Each chapter is intended to be
a self-contained description of a piece of the system, and you need not necessarily read the
chapters in ordet recommend that you start by reading through Chapters 3-9 quickly
then skip to Chapters XXX-YY)Yhen read other chapters as you need them.

Not every feature ofd and Tk is covered here, and the explanations genared to
provide a smooth introduction rather than a terse reference source. A separate set of refer-

DRAFT (8/12/93): Distribution Restricted

Introduction

1.3

ence manual entriesis available with the Tcl and Tk distributions. These are much more
terse but they cover absolutely every feature of both systems.

Thisbook assumes that you are familiar with the C programming language as defined
by the ANSI C standard, and that you have some experience with UNIX and X 11. In order
to understand Part 1V you will need to understand many of the features provided by the
Xlib interface, such as graphics contexts and window éttributes; however, these detailsare
not necessary except in Part 1V. You need not know anything about either Tcl or Tk before
reading this book; both of them will be introduced from scratch.

Notation

Throughout the book | useaCour i er font for anything that might be typed to a com-
puter, such as variable names, procedure and command names, Tcl scripts, and C code.
The examples of Tcl scripts use notation like the following:
set a 44
0 44
Tcl commandssuch as“set a 44” isthe example appear in Courier and their results,
such as“44” in the example, appear in Courier oblique. The 0 symbol before the result
indicates that thisis anormal return value. If an error occursin a Tcl command then the
error message appearsin Courier oblique, preceded by a0 symbol to indicate that thisis
an error rather than anormal return:
set a 44 55
O wong # args: should be "set varName ?newval ue?"

When describing the syntax of Tcl commands, Courier obliqueis used for formal
argument names. If an argument or group of argumentsis enclosed in question marks it
means that the arguments are optional. For example, the syntax of theset command isas
follows:

set var Nanme ?newval ue?

This means that the word set would be entered verbatim to invoke the command, while
var Nanme and newVal ue are the names of set 's arguments; when invoking the com-
mand you would type a variable name instead of var Nane and a new value for the vari-
ableinstead of newVal ue. ThenewVal ue argument is optional.

DRAFT (8/12/93): Distribution Restricted

Chapter 2
An Overview of Tcl and Tk

2.1

This chapter introducescifand Tk with a series of scripts that illustrate the main features
of the systems. Although you should be able to start writing simple scripts after reading
this chapterthe explanations here are not intended to be complete. All of the information
in this chapter will be revisited in more detail in later chapters, and several important
aspects of the systems, such as their C interfaces, are not discussed at all in this chapter
The purpose of this chapter is to show you the overall structurd ah@ Tk and the

kinds of things they can do, so that when individual features are discussed in detail you'll
be able to see why they are useful.

Getting started

In order to invoke @l scripts you must run aclfapplication. If El is installed on your sys-
tem then there should exist a simptag Jhell application calleticl sh, which you can
use to try out some of the examples in this chaptec(ifids not been installed on your
system then refer to Appendix A for information on how to obtain and instalyfig the
command

tcl sh
to your shell to invoké cl sh; t cl sh will start up in interactive mode, readingl Tom-
mands from its standard input and passing them todhat&rpreter for evaluation. For
starters, type the following commandittol sh:

expr 2 + 2
Tcl sh will print the result 4” and prompt you for another command.

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

An Overview of Tcl and Tk

This exampleillustrates several features of Tcl. First, Tcl commands are similar in
form to shell commands. Each command consists of one or more words separated by
spaces or tabs. In the example there are four words: expr, 2, +, and 2. Thefirst word of
each command is its name: the name selects a C procedure in the application that will
carry out the function of the command. The other words are arguments that are passed to
the C procedure. Expr isone of the core commands built into the Tcl interpreter, so it
existsin every Tcl application. It concatenates its argumentsinto asingle string and evalu-
atesthe string as an arithmetic expression.

Each Tcl command returns aresult string. For the expr command the result isthe
value of the expression. Results are always returned as strings, so expr convertsits
numerical result back to astring in order to return it. If acommand has no meaningful
result then it returns an empty string.

From now on | will use notation like the following to describe examples:

expr 2 + 2
o 4

Thefirst line is the command you type and the second line is the result returned by the
command. The 0 symbol indicates that the line contains areturn value; the 0 will not
actually be printed out by t cl sh. | will omit return values in cases where they aren’t
important, such as sequences of commands where only the last command’s result matters.

Commands are normally terminated by newlines, so when you aretypingtot cl sh
each line normally becomes a separate command. Semi-colons also act as command sepa-
rators, in case you wish to enter multiple commands on asingleline. It isalso possible for
asingle command to span multiple lines; you'll see how to do this later.

The expr command supports an expression syntax similar to that of expressionsin
ANSI C, including the same precedence rules and most of the C operators. Here are afew
examples that you could typetot cl sh:

expr 3 << 2
o 12
expr 14.1*6
0 84.6
expr (3 >4) || (6 <=7)
01
Thefirst exampleillustrates the bitwise |eft-shift operator <<. The second example shows
that expressions can contain real values as well asinteger values. The last example shows
the use of relationa operators > and <= and the logical or operator | | . Asin C, boolean
results are represented numerically with 1 for true and O for false.
Toleavet cl sh, invoketheexi t command:
exit
This command will terminate the application and return you to your shell.

DRAFT (8/12/93): Distribution Restricted

2.2 Hello world with Tk 7

2.2

R S

I |hend .| |
— Hello, wuﬂd!l

Figure 2.1. The“helloworld” application. All of the decorations around the “Hello, world!” button
are provided by the mvmmwindow manager. If you use a different window manager then your
decorations may be different.

Hello world with Tk

Although Tcl provides afull set of programming features such as variables, loops, and
procedures, it is not intended to be a stand-al one programming environment. Tcl is
intended to be used as part of applications that provide their own Tcl commands in addi-
tion to those in the Tcl core. The application-specific commands provide interesting prim-
itives and Tcl is used to assemble the primitives into useful functions. Tcl by itself isn't
very interesting and it is hard to motivate all of Tcl’s facilities until you have seen some
interesting application-specific commands to use them with.

Tk provides aparticularly interesting set of commandsto use with Tcl’s programming
tools. Most of the examplesin the book will use an application calledwi sh, whichissim-
ilartot cl sh except that it aso includes the commands defined by Tk. Tk’s commands
alow you to create graphical user interfaces. If Tcl and Tk have been installed on your
system then you can invokewi sh from your shell just liket cl sh; it will display asmall
empty window on your screen and then read commands from standard input. Hereisa
simplewi sh script:

button .b -text "Hello, world!'" -command exit

pack .b
If you type these two Tcl commandstow sh the window’s appearance will change to
what is shown in Figure 2.1. If you then move the pointer over the window and click
mouse button 1, the window will disappear and wi sh will exit.

There are several thingsto explain about this example. First let us deal with the syn-
tactic issues. The example contains two commands, but t on and pack, both of which
are implemented by Tk. Although these commands look different than the expr com-
mand in the previous section, they have the same basic structure as all Tcl commands,
consisting of one or more words separated by white space. Thebut t on command con-
tains six words and the pack command contains two words.

The fourth word of the but t on command is enclosed in double quotes. This allows
the word to include white space characters: without the quotes“Hel | o, ” and “wor | d! ”
would be separate words. The double-quotes are not part of the word itself; they are
removed by the Tcl interpreter before the word is passed to the command as an argument.

DRAFT (8/12/93): Distribution Restricted

An Overview of Tcl and Tk

For theexpr command the word structure doggnatter much sincexpr concate-
nates all its gguments togetheHowever for théut t on andpack commands, and for
most €l commands, the word structure is important. Bhet on command expects its
first agument to be the name of a window and the followiggigients to come in pairs,
where the first gument of each pair is the name afefiguration optiorand the second
agument is a value for that option. Thus if the double-quotes were omitted the value of
the-t ext option would beHMel | o, " and “wor | d! ” would be treated as the name of a
separate configuration option. Since there is no option defined with the wanied! ”
the command would return an etror

Now let us move on to the behavior of the commands. The basic building block for a
graphical user interface in Tk isnadget A widget is a window with a particular appear-
ance and behavior (the terms “widget” and “window” are used synonymously in itk). W
gets are divided into classes such as buttons, menus, and scrollbars. All the widgets in the
same class have the same general appearance and bdtavixample, all button wid-
gets display a text string or bitmap and execute a particclaommand when they are
invoked with the mouse.

Widgets are aganized hierarchically in Tk, with names that reflect their position in
the hierarchyThemain widgetwhich appeared on the screen when you staiteth, has
the name “.”. The nameb refers to a child of the main widgetidget names in Tk are
like file names in UNIX except that they us€' ‘as a separator character instead/df “

Thus. a. b. c refers to a widget that is a child of widget. b, which in turn is a child of
. a, which is a child of the main widget.

Tk provides one command for each class of widgets, which you invoke to create wid-
gets of that class. For example the t on command creates button widgets. All of the
widget creation commands have the same form: the fgstrant is the name of a new
widget to create and additionagaments specify configuration options. feient widget
classes support dirent sets of options. Mgets typically have many options (there are
about 20 diferent options defined for buttons, for example), and default values are pro-
vided for the options that you daspecify When a widget creation command liket -

t on is invoked it creates a new window by the given name and configures it as specified
by the options.

Thebut t on command in the example specifies two optiettext , which is a
string to display in the button, and omrand, which is a Tl script to execute when the
user invokes the button. In this examplete®muand option isexi t . Here are a few
other button options that you can experiment with:

- background The background color for the button.
- foreground The color of the text in the button.

-font The name of the font to use for the button, such as
-times-nmedi umr-normal ---120-* for a 12-point
Times Roman font.

DRAFT (8/12/93): Distribution Restricted

2.3 Script files 9

The pack command makes the button widget appear on the screen. Creating awidget
does not automatically cause it to be displayed. Independent entities called geometry man-
agersare responsible for computing the sizes and locations of widgets and making them
appear on the screen. The pack command in the exampl e asks a geometry manager called
the packerto manage . b. The command asksthat . b fill the entire area of its parent win-
dow; furthermore, if the parent has more space than needed by its child, asin the example,
the parent is shrunk so that it is just large enough to hold the child. Thus when you typed
the pack command the main window shrunk fromits origina size to the size that appears
inFigure 2.1.

2.3 Script files

In the examples so far you have typed Tcl commandsinteractively tot cl sh or wi sh.
You can a'so place commands into script files and invoke the script files just like shell
scripts. To do this for the hello world example, place the following text in afile named

hel | o:
#! /usr/local /bin/wi sh -f
button .b -text "Hello, world!" -command exit
pack .b

This script isthe same as the one you typed earlier except for thefirst line. Asfar aswi sh
is concerned thisline is acomment but if you make the file executable (type
“chnod 775 hel | 0” to your shell, for example) you can then invoke the file directly
by typing hel | o to your shell. When you do this the system will invokewi sh, passing it
the file as a script to interpret. W sh will display the same window shown in Figure 2.1
and wait for you to interact with it. In this case you will not be able to type commands
interactively to wish; all you can do is click on the button.

Note: This script will only work ifM sh is installed i/ usr/ | ocal / bi n. If wi sh has been

installed somewherelse then you'll need to change the first lineeftect its location on
your system.

In practice users of Tk applications rarely type Tcl commands; they interact with the
applications using the mouse and keyboard in the usual ways you would expect for graph-
ical applications. Tcl works behind the scenes where users don’t normally seeit. The
hel | o script behaves just the same as an application that has been coded in C with atool-
kit such as Motif and compiled into abinary executable file.

During debugging, though, it is common for application developers to type Tcl com-
mands interactively. For example, you could test out the hel | o script by startingwi sh
interactively (typewi sh to your shell instead of hel | 0). Then type the following Tcl
command:

source hello

DRAFT (8/12/93): Distribution Restricted

10

An Overview of Tcl and Tk

2.4

Sour ce isaTcl command that takes a file name as argument. It reads the file and evalu-
atesit asaTcl script. Thiswill generate the same user interface as if you had invoked
hel | o directly from your shell, but you can now type Tcl commands interactively too.
For example, you could edit the script file to change the - conmrand option to
-command "puts CGood-bye!; exit"
then type the following commands interactively towi sh without restarting the program:
destroy .b
source hello
The first command will delete the existing button and the second command will recreate
the button with the new - conmrand option. Now when you click on the button the put s
command will print a message on standard output beforewi sh exits.

Variables and substitutions

Tcl allows you to store values in variables and use those valuesin commands. For exam-
ple, consider the following script, which you could typeto either t cl sh or wi sh:

set a 44
0 44

expr $a*4
0 176

Thefirst command assignsthevalue“44” to variable a and returnsthevariable'svalue. In
the secon command t he $ causes Tcl to perform variable substitution: the Tcl interpreter
replaces the dollar-sign and the variable name following it with the value of the variable,
so that the actual argument received by expr is“44* 4", Variables need not be declared
in Tcl; they are created automatically when assigned to. Variable values are stored as
strings and arbitrary string values of any length are allowed. Of course, in this example an
error will occur inexpr if the value of a doesn’t make sense as an integer or real number
(try other values and see what happens).

Tcl also provides command substitution, which allows you to use the result of one
command in an argument to another command:

set a 44
set b [expr $a*4]
0 176

Square brackets invoke command substitution: everything inside the bracketsis evaluated
as a separate Tcl script and the result of that script is substituted into the word in place of

the bracketed command. In this exampl e the second argument of the second command will
be“176".

DRAFT (8/12/93): Distribution Restricted

2.5 Control structures 11

2.5 Control structures

The next example uses variables and substitutions along with some simple control struc-
turesto create a Tcl procedure power that raises a base to an integer power:
proc power {base p} {
set result 1
while {$p > 0} {
set result [expr $result*$base]
set p [expr $p-1]

return $result
}
If you typethe abovelinestow sh ort cl sh, or if you enter them into afile and then
sour ce thefile, anew command power will become available. The command takes two
arguments, a number and an integer power, and its result is the number raised to the
power:

power 2 6
0 64

power 1.15 5
0 2.01136

This example uses one additional piece of Tcl syntax: braces. Braces are like double-
quotesin that they can be placed around aword that contains embedded spaces. However,
braces are different from double-quotes in two respects. First, braces nest. The last word
of the pr oc command starts after the open brace on the first line and contains everything
up to the close brace on the last line. The Tcl interpreter removes the outer braces and
passes everything between them, including several nested pairs of braces, to pr oc asan
argument. The second difference between braces and double-quotes is that no substitu-
tions occur inside braces, whereas they do inside quotes. All of the characters between the
braces are passed verbatim to pr oc without any special processing.

The pr oc command takes three arguments: the name of a procedure, alist of argu-
ment names separated by white space, and the body of the procedure, which isa Tcl script.
Pr oc entersthe procedure nameinto the Tcl interpreter as anew command. Whenever the
command isinvoked, the body of the procedure will be evaluated. While the procedure
body is executing it can access its arguments as variables: base will hold the first argu-
ment to power and p will hold the second argument.

The body of the power procedure contains three Tcl commands: set , whi | e, and
r et ur n. Thewhi | e command does most of the work of the procedure. It takes two
arguments, an expression “$p > 0” and a body, which is another multi-line Tcl script.
Thewhi | e command evaluatesits expression argument and if the result is non-zero then
it evaluates the body as a Tcl script. It repeats this process over and over until eventualy
the expression evaluates to zero. In the example, the body of thewhi | e command multi-

DRAFT (8/12/93): Distribution Restricted

12

An Overview of Tcl and Tk

pliesthe result value by base and then decrements p. When p reaches zero the result con-
tains the desired power of base.

Ther et ur n command causes the procedure to exit with the value of variable
resul t asthe procedure's result. If it is omitted then the return value of the procedure
will be the result of the last command in the procedure’s body. In the case of power this
would be the result of whi | e, which isaways an empty string.

The use of bracesin this exampleis crucial. The single most difficult issue in writing
Tcl scripts is managing substitutions: making them happen when you want them and pre-
venting them from happening when you don’t want them. Braces prevent substitutions or
defer them until later. The body of the procedure must be enclosed in braces because we
don’'t want variable and command substitutions to occur at the time the body is passed to
pr oc asan argument; we want the substitutions to occur later, when the body is evaluated
asaTcl script. The body of thewhi | e command is enclosed in braces for the same rea
son: rather than performing the substitutions once, while parsing thewhi | e command,
we want the substitutions to be performed over and over, each time the body is evaluated.
Bracesare dso needed inthe“{ $p > 0} " argument to whi | e. Without them the value
of variable p would be substituted when parsing the whi | e command; the expression
would have a constant value and whi | e would loop forever (you can try replacing some
of the braces in the example with double quotes to see what happens).

In the examplesin this book | use a stylized syntax where the open brace for an argu-
ment that is a Tcl script appears at the end of one line, the script follows on successive
lines indented, and the close brace is on aline by itself after the script. Although | think
that this makes for readable scripts, Tcl doesn’t require this particular syntax. Script argu-
ments are subject to the same syntax rules as any other arguments; in fact the Tcl inter-
preter doesn’'t even know that an argument isa script at the time it parsesit. One
consequence of thisisthat the open parenthesis must be on the same line as the preceding
portion of the command. If the open brace is moved to aline by itself then the newline
before the open brace will terminate the command.

By now you have seen nearly the entire Tcl language syntax. The only remaining syn-
tactic feature is backslash substitution, which allows you to enter special characters such
as dollar-signs into aword without enclosing the entire word in braces. Note that whi | e
and pr oc are not specia syntactic elementsin Tcl. They are just commands that take
arguments just like al Tcl commands. The only special thing about whi | e and pr oc is
that they treat some of their arguments as Tcl scripts and cause the scripts to be evaluated.
Many other commands also do this. The but t on command was one example (its- com
mand optionisaTcl script), and you'll read about several other control structures|ater on,
such asf or, f or each, case,andeval .

One final note about procedures. The variablesin a procedure are normally local to
that procedure and will not be visible outside the procedure. In the power example the
local variablesinclude the argumentsbase and p aswell asthevariabler esul t . A
fresh set of local variablesis created for each call to a procedure (arguments are passed by
copying their values), and when a procedure returnsits local variables are deleted. Vari-

DRAFT (8/12/93): Distribution Restricted

2.6 Event bindings 13

2.6

121 to the power |7 is 180.109

= power | --iT|JI
|

Figure 2.2. A graphical user interface that computes powers of abase.

ables named outside any procedure are called global variables; they last forever unless
explicitly deleted. You'll find out later how a procedure can access global variables and
the local variables of other active procedures.

Event bindings

The next example provides a graphical front-end for the power procedure. In addition to
demonstrating two new widget classesit illustrates Tk’s binding mechanism. A binding
causes aparticular Tcl script to be evaluated whenever a particular event occursin a par-
ticular window. The - conmmaind option for buttons is an example of a simple binding
implemented by a particular widget class. Tk also includes amore general mechanism that
can be used to extend the behavior of arbitrary widgetsin nearly arbitrary ways.
To run the example, copy the following script into afile power and invoke thefile
from your shell.
#!/usr/local /bin/wish -f
proc power {base p} {
set result 1
while {$p > 0} {
set result [expr $result*$base]
set p [expr $p-1]

return $result

}

entry .base -width 6 -relief sunken -textvariable base

| abel .labell -text "to the power"

entry .power -width 6 -relief sunken -textvariable power
| abel .label2 -text "is"

| abel .result -textvariable result
pack .base .labell .power .label2 .result \
-side left -padx 1m -pady 2m
bi nd . base <Return> {set result [power $base $power]}
bi nd . power <Return> {set result [power $base $power]}

This script will produce a screen display like that in Figure 2.2. There are two entry wid-
getsin which you can click with the mouse and type numbers. If you type return in either

DRAFT (8/12/93): Distribution Restricted

14

An Overview of Tcl and Tk

of the entries, the result will appear on the right side of the windowcan compute dif-
ferent results by modifying either the base or the power and then typing return again.

This application consists of five widgets: two entries and three labels. Entries are wid-
gets that display one-line text strings that you can edit interactiMedytwo entries,

. base and. power, are used for entering the numbers. Each entry is configured with a
- wi dt h of 6, which means it will be lge enough to display about 6 digits, and a

-rel i ef ofsunken, which gives the entry a depressed appearance. The

-t ext vari abl e option for each entry specifies the name of a global variable to hold
the entrys text: any changes you make in the entry will be reflected in the variable and
vice versa.

Two of the labels, | abel 1 and. | abel 2, hold decorative text and the third,

. resul t, holds the result of the power computation. Thext var i abl e option for
.resul t causes it to display whatever string is in global variabkeul t
whereasl abel 1 and. | abel 2 display constant strings.

Thepack command arranges the five widgets in a row from left to right. The com-
mand occupies two lines in the script; the backslash at the end of the first line is a line-con-
tinuation character: it causes the newline to be treated as a spaesi Taeoption
means that each widget is placed at the left side of the remaining space in the main widget:
first. base is placed at the left edge of the main wingddwven. | abel 1 is placed at the
left side of the space not occupied.thase, and so on. Thepadx and- pady options
make the display a bit more attractive by arranging for 1 millimeter of extra space on the
left and right sides of each widget, plus 2 millimeters of extra space above and below each
widget. The hi suffix specifies millimeters; you could also uge for centimeters, i*”
for inches, p” for points, or no suix for pixels.

Thebi nd commands connect the user interface tpthser procedure. Eachi nd
command has threeguments: the name of a windoan event specification, and el T
script to invoke when the given event occurs in the given windBet ur n> specifies
an event consisting of the user typing the return key on the keyboard. Here are a few other
event specifiers that you might find useful:

<Button-1> Mouse button 1 is pressed.
<But t onRel ease- 1> Mouse button 1 is released.
<Doubl e- But t on- 1> Double-click on mouse button 1.

<1> Short-hand fokBut t on- 1>.

<Key- a> Key “a” is pressed.

<a>ora Short-hand fokKey- a>.

<Mot i on> Pointer motion with no buttons or modifier keys
pressed.

<B1- Mbti on> Pointer motion with button 1 pressed.

<Any- Mot i on> Pointer motion with any (or no) buttons or modifier

keys pressed.

DRAFT (8/12/93): Distribution Restricted

2.7 Subprocesses 15

2.7

The scripts for the bindings invoke power , passing it the values in the two entries,
and they storetheresult inr esul t sothat it will be displayed inthe. r esul t widget.
These bindings extend the generic built-in behavior of the entries (editing text strings)
with application-specific behavior (computing aval ue based on two entries and displaying
that value in athird widget).

The script for abinding has access to several pieces of information about the event,
such asthelocation of the pointer when the event occurred. For an example, start upwi sh
interactively and type the following command to it:

bind . <Any-Mtion> {puts "pointer at 9%, %"}
Now move the pointer over the window. Each time the pointer moves a message will be
printed on standard output giving its new location. When the pointer motion event occurs,
Tk scans the script for % sequences and replaces them with information about the event
before passing the script to Tcl for evaluation. %x is replaced with the pointer’s x-coordi-
nate and %y is replaced with the pointer’s y-coordinate.

Subprocesses

Normally Tcl executes each command by invoking a C procedure in the application to
carry out its function; thisis different from a shell program like sh where each command
isnormally executed in a separate subprocess. However, Tcl also allows you to create sub-
processes, using the exec command. Here is asimple example of exec:

exec grep #include tk.h
O #include <tcl.h>

#i ncl ude <X11/ Xl'i b. h>

#i ncl ude <stddef. h>
The exec command treats its arguments much like the words of a shell command line. In
this example exec creates anew processto run the gr ep program and passes it
“#i ncl ude” and “t k. h” asarguments, just asif you had typed

grep #include tk.h
to your shell. The gr ep program searchesfilet k. h for lines that contain the string
#i ncl ude and prints those lines on its standard output. However, exec arranges for
standard output from the subprocess to be piped back to Tcl. Exec waitsfor the processto
exit and then it returns all of the standard output asits result. With this mechanism you can
execute subprocesses and use their output in Tcl scripts. Exec also supportsinput and out-
put redirection using standard shell notation such as <, <<, and >, pipelineswith | , and
background processes with &.

The example below creates a simple user interface for saving and re-invoking com-

monly used shell commands. Type the following script into afile named r edo and invoke
it:

DRAFT (8/12/93): Distribution Restricted

16

An Overview of Tcl and Tk

L —'| redo | 4 | J| | =
IR B redo B
| | I
@ Is |
ditroff -ms paper.ms |
| - Ipg |
= redo [=AIE! rcsinfo |
| J ‘ Is -1 RCS |7
1 Is I 1 |
' ' (0
(b)

Figure 2.3. Ther edo application. The user can type acommand in the entry window, asin (a).
When the user types return the command isinvoked as a subprocess using exec and anew buttonis
created that can be used to re-invoke the command later, asin (b). Additional commands can be
typed to create additional buttons, up to alimit of five buttonsasin (c).

#! /usr/local / bin/wish -f
set idO
entry .entry -width 30 -relief sunken -textvariable cnd
pack .entry -padx 1m-pady 1m
bind .entry <Return> {

set id [expr $id + 1]

if {$id > 5} {

destroy .b[expr $id - 5]

}
button . b$%id -conmmand "exec <@tdin >@&tdout $cnd" \

-text $crd
pack .b$id -fill x
.b$id invoke

.entry delete 0 end

}
Initially the script creates an interface with a single entry widget. You can type a shell
command such as| s into the entry, as shown in Figure 2.3(a). When you type return the
command gets executed just asif you had typed it to the shell from which you invoked
r edo, and output from the command appears in the shell’s window. Furthermore, the
script creates a new button widget that displays the command (see Figure 2.3(b)) and you
can re-invoke the command later by clicking on the button. As you type more and more

commands, more and more buttons appear, up to alimit of five remembered commands as
in Figure 2.3(c).

DRAFT (8/12/93): Distribution Restricted

2.7 Subprocesses 17

Note:

This example suffersdim several limitations. For example, you cannot specify wildscar
such as “*"in command lines, and thet!” command doeshbehave poperly In Part |
you'll read about @l facilities that you can use to eliminate these limitations.

The most interesting part of thedo script is in thebi nd command. The binding
for <Ret ur n> must execute the command, which is stored irctitevariable, and cre-
ate a new button widget. First it creates the widget. The button widgets have names like
. bl,. b2, and so on, where the number comes from the vaiiabld d starts at zero
and increments before each new button is created. The notatiBhd” generates a wid-
get name by.“b” and the value of d. Before creating a new widget the script checks to
see if there are already five saved commands; if so then the oldest existing button is
deleted. The notation b[expr $i d - 5] ” produces the name of the oldest button by
subtracting five from the number of the new button and concatenating it.vbithThe -
command option for the new button invokexec and redirects standard input and stan-
dard output for the subprocess(esjt@ h’s standard input and standard output, which
are the same as those of the shell from wihickh was invoked: this causes output from
the subprocesses to appear in the sheiihdow instead of being returnedwiosh.

The commandgack . b$id -fill x”makes the new button appear at the bot-
tom of the windowThe option*fi || x”improves the appearance by stretching the
button horizontally so that it fills the width of the window even it it ddeslly need
that much space for its textryTomitting the- fi | | option to see what happens without
it.

The last two commands of the binding script are callieilget commanddVhenever
a new widget is created a newl Tommand is also created with the same name as the
widget, and you can invoke this command to communicate with the widget. Thegiirst ar
ment to a widget command selects one of several operations and addiganadats are
used as parameters for that operation. Irr et script the first widget command causes
the button widget to invoke itscomrand option just as if you had clicked the mouse
button on it. The second widget command clears the entry widget in preparation for a new
command to be typed.

Each class of widget supports aelient set of operations in its widget commands,
but many of the operations are similar from widget to widget. For example, every widget
class supports@onf i gur e widget command that can be used to modify any of the con-
figuration options for the widget. If you run thedo script interactively you could type
the following command to change the background of the entry widget to yellow:

.entry configure -background yel | ow
Or, you could type

. b1 configure -foreground brown
.bl flash

to change the color of the text in buttonl to brown and then cause the button to flash.
One of the most important things abouat @nd Tk is that they make every aspect of
an application accessible and modifiable at run-time. For exampleg ttoescript modi-

DRAFT (8/12/93): Distribution Restricted

18

An Overview of Tcl and Tk

2.8

fies its own interface on the flyh addition, Tk provides commands that you can use to
query the structure of the widget hierarcagd you can useonf i gur e widget com-
mands to query and modify the configuration options of individual widgets.

Additional features of Tcl and Tk

2.9

The examples in this chapter used every aspect ofctHanguage syntax and they illus-
trated many of the most important featuresafand Tk. HoweverTcl and Tk contain

many other facilities that are not used in this chapter; all of these will be described later in
the book. Here is a sampler of some of the most useful features thatt lneegnimen-

tioned yet:

Arraysand lists. Tcl provides associative arrays for storing key-value pdiicaftly
and lists for managing aggregates of data.

Morecontrol structures. Tcl provides several additional commands for controlling the
flow of execution, such asval , f or, f or each, andswi t ch.

String manipulation. Tcl contains a number of commands for manipulating strings,
such as measuring their length and performing regular expression pattern matching and
substitution.

File access. You can read and write files fronalBcripts and retrieve directory infor-
mation and file attributes such as length and creation time.

More widgets. Tk contains many widget classes besides those shown here, such as
menus, scrollbars, a drawing widget callezhavas, and a text widget that makes it
easy to achieve hypertexfets.

Accessto other X facilities. Tk provides commands for accessing all of the major
facilities in the X Whdow System, such as a command for communicating with the
window manager (to set the wind®aitle, for example), a command for retrieving the
selection, and a command to manage the input focus.

C interfaces. Tcl provides C library procedures that you can use to define your own
new Tcl commands in C, and Tk provides a library that you can use to create your own
widget classes and geometry managers in C.

Extensions and applications

Tcl and Tk have an active and rapidly-growing user community that now numbers in the
tens of thousands. Many people have built applications basexl andlTk and packages
that extend the base functionality afl &and Tk. Several of these packages and applica-
tions are publically available and widely used in thBTk community There isrt space

in this book to discuss all of the excitingl/Tk software in detail but this section gives a

DRAFT (8/12/93): Distribution Restricted

2.9 Extensions and applications 19

29.1

2.9.2

quick overview of five of the most popular extensions and applications. See Appendix A
for information on how you can obtain them and other contributed Tcl/Tk software.

Expect

Expect isone of the oldest Tcl applications and aso one of the most popular. It isapro-
gram that “talks’ to interactive programs. Following a script, expect knowswhat output
can be expected from a program and what the correct responses should be. It can be used
to automatically control programslikef t p,t el net,rl ogi n,crypt,fsck,tip,and
others that cannot be automated from a shell script because they require interactive input.
Expect aso alowsthe user to take control and interact directly with the program when
desired. For example, the following expect script logs into aremote machine using the
r1 ogi n program, setsthe working directory to that of the originating machine, then turns
control over to the user:

#!/usr/ | ocal / bi n/ expect

spawn rlogin [lindex $argv 1]

expect -re "(U#H) "

send "cd [pwd]\r"

i nteract
Thespawn, expect, send, andi nt er act commands are implemented by expect ,
and ! i ndex and pwd are built-in Tcl commands. The spawn command startsupr | o-
gi n, using acommand-line argument as the name of the remote machine. The expect
command waitsfor r | ogi n to output a prompt (either “98 or “#”, followed by a space),
then send outputs acommand to change the working directory, just as if a user had typed
the command interactively. Finaly, i nt er act causesexpect to step out of the way so
that the user who invoked the expect script can now talk directly tor | ogi n.

Expect can be used for many purposes, such as a scriptable front-end to debuggers,
mailers, and other programs that don’'t have scripting languages of their own. The pro-
grams require no changes to be driven by expect. Expect isalso useful for regression
testing of interactive programs. Expect can be combined with Tk or other Tcl exten-
sions. For example, using Tk it is possible to make a graphical front end for an existing
interactive application without changing the application.

Expect was created by Don Libes.

Extended Tcl

Extended Tcl (TclX) isalibrary package that augments the built-in Tcl commands with
many additional commands and procedures oriented towards system programming tasks.
It can be used with any Tcl application. Here are a few of the most popular features of
TelX:

¢ Access to many additional POSIX system calls and functions.
¢ A file scanning facility with functionality much like that of the awk program.

DRAFT (8/12/93): Distribution Restricted

20

An Overview of Tcl and Tk

293

294

* Keyed lists, which provide functionality similar to C structures.

¢ Commands for manipulating times and dates and converting them to and from ASCII.
* Anon-line help facility.

¢ Facilitiesfor debugging, profiling, and program devel opment.

Many of the best features of TclX are no longer part of TclX: they turned out to be so

widely useful that they were incorporated into the Tcl core. Among the Tcl features pio-

neered by TclX arefileinput and output, array variables, real arithmetic and transcenden-

tal functions, auto-loading, X PG-based internationalization, and the upvar command.
Extended Tcl was created by Karl Lehenbauer and Mark Diekhans.

XF

Tk makesit relatively easy to create graphical user interfaces by writing Tcl scripts, but
XF makesit even easier. XF isan interactive interface builder: you design a user interface
by manipulating objects on the screen, then XF creates a Tcl script that will generate the
interface you have designed (see Figure 2.4). XF provides tools for creating and configur-
ing widgets, arranging them with Tk’s geometry managers, creating event bindings, and so
on. XF manipulates alive application whileit is running, so the full effect of each change
in the interface can be seen and tested immediately.

XF supports al of Tk’s built-in widget classes and allows you to add new widget
classes by writing class-specific Tcl scripts for XF to use to handle the classes. You
needn’'t use XF exclusively: you can design part of a user interface with XF and part by
writing Tcl scripts. XF supports most of the currently available extensions to Tcl and Tk,
and XF itself iswrittenin Tcl.

XF was created by Sven Delmas. It is based on an earlier interface builder for Tk
called BY O, which was developed at the Victoria University of Wellington, New Zealand.

Distributed programming

Tcl Distributed Programming (Tcl-DP) is a collection of Tcl commands that simplify the
development of distributed programs. Tcl-DP's most important feature is a remote proce-
dure call facility, which allows Tcl applications to communicate by exchanging Tcl
scripts. For example, the following script uses Tcl-DP to implement atrivial “id server”,
which returns unique identifiersin response to Get | d requests:
set nmyld O
proc Getld {} {
gl obal nyld;
set nyld [expr $myld+1]
return $nyld

}
MakeRPCSer ver 4545

DRAFT (8/12/93): Distribution Restricted

2.9 Extensions and applications 21

Hle Edit Configuration Programming Misc Options Help
T = s (635 x[EF|NR| 7| T E
| cB (empty):0
Current widget path:i s
Widget classes Templates

| Button Tk} ||| |AlertBoxn

Canvas {Tk) F5Box

Checkbutton {Tk) TextBox

Entry {Tk> YeszHoBox

Frane {Tk)

Label {Tk)

Listbox {Tk)

Henu {Tk)

Henubukttion {Tk)

Hezzage {Tk>

Radiobutton {Tk)

Scale {Tk)

Scrollbar {Tk)

Text {Tk)

Toplevel {Tk>
LAl] | .=
Current widget. type: i Button

Add with defaults | Ee"” i) Configure and add |

Figure 2.4. A screen dump showing the main window of XF, an interactive application builder for
Tcl and Tk.

All of the code in this script except the last line is ordinary Tcl code that defines a global
variableny| d and aprocedure Get | d that increments the variable and returnsits new
value. The MakeRPCSer ver command isimplemented by Tcl-DP; it causes the applica-
tion to listen for requests on TCP socket 4545.
Other Tcl applications can communicate with this server using scripts that look like

the following:

set server [MakeRPCClient server.comnmpany.com 4545]

RPC $server Getld
The first command opens a connection with the server and saves an identifier for that con-
nection. The argumentsto MakeRPCCl i ent identify the server’s host and the socket on
which the server is listening. The RPC command performs a remote procedure call. Its

DRAFT (8/12/93): Distribution Restricted

22

An Overview of Tcl and Tk

295

arguments are a connection identifier and an arbitrary Tcl script. RPC forwards the script
to the server; the server executes the script and returnsits result (a new identifier in this
case), which becomes the result of the RPC command. Any script whatosever could be
substituted in place of the Get | d command.

Tcl-DP also includes several other features, including asynchronous remote procedure
calls, where the client need not wait for the call to complete, adistributed object systemin
which objects can be replicated in several applications and updates are automatically
propagated to all copies, and asimple name service. Tcl-DP has been used for applications
such as avideo playback system, groupware, and games. Tcl-DP is more flexible than
most remote procedure call systems because it is not based on compiled interfaces
between clients and servers: it iseasy in Tcl-DP to connect an existing client to a new
server without recompiling or restarting the client.

Tcl-DP was created by Lawrence A. Rowe, Brian Smith, and Steve Yen.

Ak

Ak isan audio extension for Tcl. It is built on top of AudioFile, a network-transparent,
deviceindependent audio system that runs on avariety of platforms. Ak provides Tcl com-
mands for file playback, recording, telephone control, and synchronization. The basic
abstractionsin Ak are connections to AudioFile servers, device contexts (which encapsu-
late the state for a particular audio device), and reguests such as file playback. For exam-
ple, hereis ascript that plays back an audio file on aremote machine:

audi oserver renpte "server.conpany.com 0"

remote context room -device 1

room create play "announcenent-file.au"
The first command opens a connection to the audio server on the machine
server. conpany. comand gives this connection the namer enot e. It also creates a
command named r enot e, which is used to issue commands over the connection. The
second command creates a context named r oom which is associated with audio device 1
on the server, and also creates acommand named r oomfor communicating with the con-
text. The last command initiates a playback of a particular audio file.

Ak implements a unique model of time that allows clients to specify precisely when
audio samples are going to emerge. It also provides a mechanism to execute arbitrary Tcl
scripts at specified audio times; this can be used to achieve a variety of hypermedia
effects, such as displaying images or video in sync with an audio playback. When com-
bined with Tk, Ak provides a powerful and flexible scripting system for devel oping multi-
media applications such as tutorials and telephone inquiry systems.

Ak was created by Andrew C. Payne.

DRAFT (8/12/93): Distribution Restricted

Part |:

The Tcl Language

24

DRAFT (8/12/93): Distribution Restricted

Chapter 3
Tcl Language Syntax

3.1

In order to write Tl scripts you must learn two things. First, you must learnc¢hgyhtax,
which consists of about a half-dozen rules that determine how commands are parsed. The
Tcl syntax is the same for every command. Second, you must learn about the individual
commands that you use in your scriptd. @rovides about 60 built-in commands, Tk adds
several dozen more, and any application basedbor Tk will add a few more of its
own. You'll need to know all of the syntax rules right amayt you can learn about the
commands more gradually as you need them.

This chapter describes thelTanguage syntax. The remaining chapters in Part |
describe the built-ind commands, and Part Il describessT&bmmands.

Scripts, commands, and words

A Tcl script consists of one or motemmands. Commands are separated by newlines and
semi-colons. For example,

set a 24

set b 15
is a script with two commands separated by a newline charéhtesame script could be
written on a single line using a semi-colon separator:

set a 24; set b 15

Each command consists of one or mweoeds, where the first word is the name of a
command and additional words argumnents to that command.ovds are separated by
spaces and tabs. Each of the commands in the above examples has three words. There may

25

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

26

Tcl Language Syntax

3.2

] Command String

-—

-—

— 1 |
—1

1 - Words
1
])
(Command Procedure)
| | Result

Figure 3.1. Tcl commands are evaluated in two steps. First the Tcl interpreter parses the command
string into words, performing substitutions along the way. Then a command procedure processes the
words to produce a result string. Each command has a separate command procedure.

be any number of words in acommand, and each word may have an arbitrary string value.
The white space that separates wordsis not part of the words, nor are the newlines and
semi-colons that terminate commands

Evaluating a command

Tcl evaluates a command in two steps as shown in Figure 3.1: parsing and execution. In
the parsing step the Tcl interpreter applies the rules described in this chapter to divide the
command up into words and perform substitutions. Parsing is done in exactly the same
way for every command. During the parsing step the Tcl interpreter does not apply any
meaning to the values of the words. Tcl just performs a set of simple string operations such
as replacing the characters “$a” with the string stored in variable a; Tcl does not know or
care whether a or the resulting word is a number or the name of awidget or anything else.

DRAFT (8/12/93): Distribution Restricted

3.2 Evaluating a command 27

Note:

In the execution step meaning is applied to the words of the command. Tcl treats the
first word as a command name, checking to see if the command is defined and locating a
command prcedueto carry out its function. If the command is defined then the Tcl inter-
preter invokes its command procedure, passing al of the words of the command to the
command procedure. The command procedure is free to interpret the words in any way
that it pleases, and different commands apply very different meaningsto their arguments
| use the terms “wal” and “argument” intechangeably toefer to the values passed to

command prcedues. The only diffence between these two terms is that the first
argument is the second vabr

The following commands illustrate some of meanings that are commonly applied to
arguments:
set a 122

In many cases, such astheset command, arguments may take any form
whatsoever. Theset command simply treats the first argument as a variable
name and the second argument as a value for the variable. The command
“set 122 a” isvalidtoo: it creates avariable whose nameis“122” and
whosevalueis“a”.

expr 24/3.2
The argument to expr must be an arithmetic expression that follows the rules
described in Chapter 5. Several other commands also take expressions as argu-
ments.

eval {set a 122}
The argument to eval isaTcl script. Eval passesit to the Tcl interpreter
where another round of parsing and execution occurs for the argument. Other
control-flow commands such asi f and whi | e also take scripts as arguments.

lindex {red green blue purple} 2
Thefirst argument to | i ndex isalist consisting of four values separated by
spaces. This command will extract element 2 (“bl ue”) from the list and
return it. Tcl’'s commands for manipulating lists are described in Chapter 6.

string | ength abracadabra
Some commands, like st r i ng and the Tk widget commands, are actually
several commands rolled into one. The first argument of the command selects
one of several operations to perform and determines the meaning of the
remaining arguments. For example“stri ng | engt h” requires one addi-
tional argument and computesiits length, whereas“st ri ng conpar e”
requires two additional arguments.

button .b -text Hello -fg red

The arguments starting with - t ext are option-value pairs that allow you to
specify the options you care about and use default values for the others.

DRAFT (8/12/93): Distribution Restricted

28

Tcl Language Syntax

3.3

In writing Tcl scripts one of the most important things to remember is that the Tcl
parser doesn’t apply any meaning to the words of a command while it parses them. All of
the above meanings are applied by individual command procedures, not by the Tcl parser.
Another way of saying thisisthat arguments are quoted by default; if you want evaluation
you must request it explicitly. This approach is similar to that of most shell languages but
different than most programming languages. For example, consider the following C pro-
gram:

X = 4;

y = x+10;
In the first statement C stores the integer value 4 in variable x. In the second statement C
evauates the expression “x+10", fetching the the value of variable x and adding 10, and
stores the result in variabley. At the end of execution y has the integer value 14. If you
want to use aliteral string in C without evaluation you must enclose it in quotes. Now con-
sider a similar-looking program written in Tcl:

set x 4

set y x+10
The first command assignsthe string “4” to variable x. The value of the variable need not
have any particular form. The second command simply takesthe string “x+10" and stores
it asthe new value for y. At the end of the script y has the string value “x+10", not the
integer value 14. In Tcl if you want evaluation you must ask for it explicitly:

set x 4

set y [expr $x+10]
Evaluation is requested twice in this example. First, the second word of the second com-
mand is enclosed in brackets, which tells the Tcl parser to evaluate the characters between
the brackets as a Tcl script and use the result as the value of the word. Second, a dollar-
sign has been placed before x. When Tcl parsesthe expr command it substitutes the
value of variable x for the $x. If the dollar-sign were omitted then expr ’s argument
would contain the string “x”, resulting in a syntax error. At the end of the script y hasthe
string value “14”, which is amost the same asin the C example.

Variable substitution

Tcl provides three forms of substitution: variable substitution, command substitution, and
backslash substitution. Each substitution causes some of the original characters of aword
to be replaced with some other value. Substitutions may occur in any word of acommand,
including the command name, and there may be any number of substitutions within asin-
gleword.
The first form of substitution is variable substitution. It is triggered by a dollar-sign

character and it causes the value of a Tcl variable to be inserted into aword. For example,
consider the following commands:

DRAFT (8/12/93): Distribution Restricted

3.4 Command substitution 29

3.4

set kgrans 20
expr $kgrans*2.2046

0 44.092
The first command sets the value of variable kgr ans to 20. The second command com-
putes the corresponding weight in pounds by multiplying the value of kgr ans by 2.2046.
It does this using variable substitution: the string $kgr ans is replaced with the value of
variable kgr ans, so that the actual argument received by the expr command procedure
is“20*2. 2046".

Variable substitution can occur anywhere within aword and any number of times as

in the following command:

expr $resul t *$base
The variable name consists of all of the numbers, letters, and underscores following the
dollar-sign. Thusthe first variable name (r esul t) extends up to the* and the second
variable name (base) extends to the end of the word.

The examples above show only the simplest form of variable substitution. There are
two other forms of variable substitution, which are used for associative array references
and to provide more explicit control over the extent of a variable name (e.g. so that there
can be aletter immediately following the variable name). These other forms are discussed
in Chapter 4.

Command substitution

The second form of substitution provided by Tcl is command substitution. Command sub-
stitution causes part or all of acommand word to be replaced with the result of another Tcl
command. Command substitution isinvoked by enclosing a nested command in brackets:
set kgrans 20
set | bs [expr $kgrans*2.2046]
0 44.092

The characters between the brackets must constitute avalid Tcl script. The script may con-
tain any number of commands separated by newlines or semi-colonsin the usual fashion.
The brackets and al of the charactersin between are replaced with the result of the script.
Thus in the example above the expr command is executed while parsing the words for
set ; itsresult, the string “44. 092", becomes the second argument to set . Aswith vari-
able substitution, command substitution can occur anywhere in aword and there may be
more than one command substitution within a single word.

DRAFT (8/12/93): Distribution Restricted

30

Tcl Language Syntax

3.5

Backslash substitution

Note:

3.6

Thefinal form of substitution in Tcl is backslash substitution. It is used to insert special
characters such as newlines into words and also to insert characterslike[and $ without
them being treated specially by the Tcl parser. For example, consider the following com-
mand:

set msg Eggs:\ \$2. 18/ dozen\nGasoline:\ \$1.49/gallon
0O Eggs: $2.18/dozen

Gasol i ne: $1.49/gallon
There are two sequences of backslash followed by space; each of these sequencesis
replaced in the word by a single space and the space characters are not treated as word
separators. There are also two sequences of backslash followed by dollar-sign; each of
these isreplaced in the word with a single dollar-sign, and the dollar signs are treated like
ordinary characters (they do not trigger variable substitution). The backslash followed by
n isreplaced with a newline character

Table 3.1 lists al of the backslash sequences supported by Tcl. These include all of
the sequences defined for ANSI C, such as\ t to insert atab character and \ xd4 to insert
the character whose hexadecimal value is Oxd4. If a backslash isfollowed by any charac-
ter not listed in the table, asin\ $ or \ [, then the backslash is dropped from the word and
the following character isincluded in the word as an ordinary character. Thisallowsyou to
include any of the Tcl special charactersin aword without the character being treated spe-
cialy by the Tcl parser. The sequence\ \ will insert asingle backslash into aword.
The segquence backslash-newline can be used to spread along command across multi-

plelines, asin the following example:

pack .base .labell .power .label2 .result \

-side left -padx 1m -pady 2m

The backslash and newline, plus any leading space on the next line, are replaced by asin-
gle space character in the word. Thus the two lines together form a single command.
Backslash-newline sequences are unusual in that they are replaced in a separate
preprocessing step before the Tel interpreter parses the command. This means, for

example, that the space character that replaces backslash-newline will be treated as a
word separator unlessit is between double-quotes or braces.

Quoting with double-quotes

Tcl provides several ways for you to prevent the parser from giving special interpretation
to characters such as $ and semi-colon. These techniques are called quoting. You have
already seen one form of quoting in backslash subsitution; for example, \ $ causes adol-
lar-sign to be inserted into aword without triggering variable substitution. In addition to
backslash substitution Tcl provides two other forms of quoting: double-quotes and braces.

DRAFT (8/12/93): Distribution Restricted

3.6 Quoting with double-quotes 31

Backslash Sequence Replaced By

\a Audible alert (0x7)

\b Backspace (0x8)

\ f Form feed (Oxc)

\n Newline (Oxa)

\r Carriage return (Oxd)

\t Tab (0x9)

\v Vertical tab (Oxb)

\ ddd Octal value given by ddd
(one, two, or three d’s)

\ xhh Hex value given by hh
(any number of h's)

\newl i ne space A single space character.

Table 3.1. Backslash substitutions supported by Tcl. Each of the sequencesin thefirst columniis
replaced by the corresponding character from the second column. If a backslash is followed by a
character other than those in the first column, then the two characters are replaced by the second
character.

Double-quotes disable word and command separators, while braces disable almost all spe-
cia characters.

If aword is enclosed in double-quotes then spaces, tabs, newlines, and semi-colons
are treated as ordinary characters within the word. The example from page 30 can be
rewritten more cleanly with double-quotes as follows:

set nsg "Eggs: \$2.18/dozen\nGasoline: \$1.49/gallon"

O Eggs: $2.18/dozen
Gasol i ne: $1.49/gall on

Note that the quotes themselves are not part of theword. The\ n in the example could also
be replaced with an actual newline character, asin

set nmsg "Eggs: \$2.18/dozen
Gasol i ne: \$1.49/gallon"
but | think the script is more readable with \ n.
Variable substitutions, command substitutions, and backslash substitutions all occur
as usual inside double-quotes. For example, the following script setsnsg to a string con-
taining the name of avariable, its value, and the square of its value:

DRAFT (8/12/93): Distribution Restricted

32

Tcl Language Syntax

3.7

seta2.1
set msg "a is $a; the square of a is [expr $a*$a]"

0 ais2.1; the square of ais 4.41
If you would like to include a double-quote in aword enclosed in double-quotes, then use
backlash substitution:

set name a.out
set msg "Couldn’t open f ile \"$name\""

0 Couldn't open f ile "a.out"

Quoting with braces

Braces provide amore radical form of quoting where all the special charaterslose their
meaning. If aword is enclosed in braces then the characters between the braces are the
value of the word, verbatim. No substitutions are performed on the word and spaces, tabs,
newlines, and semi-colons are treated as ordinary characters. The example on page 30 can
be rewritten with braces as follows:

set msg {Eggs: $2.18/dozen

Gasoline: $1.49/gallon}
The dollar-signs in the word do not trigger variable substitution and the newline does not
act as acommand separator. Inthiscase\n cannot be used to insert a newline into the
wod as on page 31, because the\n will be included in the argument as-is without trigger-
ing backslash substitution:

set msg {Eggs: $2.18/dozen\nGasoline: $1.49/gallon}

0 Eggs: $2.18/dozen\nGasoline: $1.49/gallon
One of the most important uses for bracesis to defer evaluation. Deferred evaluation

means that special characters aren’'t processed immediately by the Tcl parser. Instead they
will be passed to the command procedure as part of its argument and the command proce-
durewill processthe special charactersitself. Braces are almost always used when passing
scripts to Tcl commands, as in the following example that computes the factorial of five:

set result 1

seti5

while {$i > 0} {

set result [expr $result*$i]
set i [expr $i-1]

The body of thewhile loop is enclosed in braces to defer substitutions. While passes
the script back into Tcl for evaluation during each iteration of theloop and the subsitutions
will be performed at that time. In this caseit isimportant to defer the substitutions so that
they are done afresh each time that while evaluates the loop body, rather than once-and-
for-all while parsing the while command.

Braces nest, as in the following example:

DRAFT (8/12/93): Distribution Restricted

3.8 Comments 33

proc power {base p} {
set result 1
while {$p > 0} {
set result [expr $result*base]
set p [expr $p-1]

return $result
}
In this case the third argument to pr oc contains two pairs of nested braces (the outermost
braces are removed by the Tcl parser). The command substitution requested with “[expr
$p- 1] " will not be performed when the pr oc command is parsed, or even when the
whi | e command is parsed as part of executing the procedure’s body, but only when
whi | e evaluates its second argument to execute the loop.
Note: If a brace is backslashed then it does not count in finding the matching close brace for a
word enclosed in braces. The backslash will notdmaved when the wbis parsed.

Note: The only form of substitution that occurs between braces is for backslash-newline. As
discussed in Section 3.5, backslash-newline sequereestaially emoved in a @
processing step be®the command is parsed.

3.8 Comments

If the first non-blank character of acommand is# then the # and all the characters follow-
ing it up through the next newline are treated as a comment and discarded. Note that the
hash-mark must occur in a position where Tcl is expecting the first character of acom-
mand. If a hash-mark occurs anywhere else then it is treated as an ordinary character that
forms part of acommand word:

This is a comment

set a 100 # Not a conment

O wong # args: should be "set varName ?newval ue?"
set b 101; # This is a comment

0 101

The # on the second line is not treated as a comment character because it occursin the
middle of acommand. Asaresult thefirst set command receives 6 arguments and gener-
ates an error. The last # istreated as a comment character, since it occurs just after the
command was terminated with a semi-colon.

3.9 Normal and exceptional returns

A Tcl command can terminate in severa different ways. A normal returnis the most com-
mon case; it means that the command completed successfully and the return includes a
string result. Tcl also supports exceptional eturnsfrom commands. The most frequent

DRAFT (8/12/93): Distribution Restricted

34

Tcl Language Syntax

Note:

3.10

form of exceptional return is an error. When an error return occurs, it means that the com-
mand could not complete its intended function. The command is aborted and any com-
mands that follow it in the script are skipped. An error return includes a string identifying
what went wrong; the string is normally displayed by the application. For example, the
following set command generates an error because it has too many arguments:
set state West Virginia
O wong # args: should be "set varName ?newval ue?"
Different commands generate errors under different conditions. For example, expr
accepts any number of arguments but requires the argumentsto have a particular syntax; it
generates an error if, for example, parentheses aren’t matched:
expr 3 * (20+4
O unmat ched parentheses in expression "3 * (20+4"

The complete exceptional return mechanism for Tcl is discussed in Chapter 9. It sup-
ports a number of exceptional returns other than errors, provides additional information
about errors besides the error message mentioned above, and allows errors to be “ caught”
so that effects of the error can be contained within a piece of Tcl code. For now, though, all
you need to know is that commands normally return string results but they sometimes
return errors that cause Tcl command interpretation to be aborted.

You may also find ther r or | nf o variable useful. After an esr Tcl setser r or | nf o to

hold a stack trace indicating exactly whehe eror occurred. Ybu can print out this
variable with the commandset errorl nfo”.

More on substitutions

The most common difficulty for new Tcl usersis understanding when substitutions do and
do not occur. A typical scenario isfor auser to be surprised at the behavior of ascript
because a substitution didn’t occur when the user expected it to happen, or a substitution
occurred when it wasn't expected. However, | think that you'll find Tcl's substitution
mechanism to be simple and predictable if you just remember two related rules:

1. Tcl parses acommand and makes substitutions in a single pass from left to right. Each
character is scanned exactly once.

2. At most asingle layer of substitution occurs for each character; the result of one substi-
tution is not scanned for further substitutions.

Tcl’s substitutions are simpler and more regular than you may be used to if you' ve pro-
grammed with UNIX shells (particularly csh). When new users run into problems with
Tcl substitutionsiit is often because they have assumed a more complex model than actu-
aly exists.

For example, consider the following command:

DRAFT (8/12/93): Distribution Restricted

3.10 More on substitutions 35

set x [format {Earnings for July: $%2f} $earnings]

O Earnings for July: $1400.26
The characters between the brackets are scanned exactly once, during command substitu-
tion, and the value of the ear ni ngs variableis substituted at that time. It is not the case
that Tcl first scansthe whole set command to substitute variables, then makes another
pass to perform command substitution; everything happensin a single scan. The result of
thef or mat command is passed verbatim to set asits second argument without any
additional scanning (for example, thedollar-signinf or mat ’s result does not trigger vari-
able substitution).

One consequence of the substitution rulesis that all the word boundaries within a
command are immediately evident and are not affected by substitutions. For example,
consider the following script:

set city "Los Angel es”

set bigCty $city
The second set command is guaranteed to have exactly three words regardless of the
value of variableci ty. Inthiscaseci t y contains a space character but the space is not
treated as aword separator.

In some situations the single-layer-of -substitutions rule can be a hindrance rather than
ahelp. For example, the following script is an erroneous attempt to delete all files with
names ending in“. 0”:

exec rm[glob *.0]
O rm a.o b.o c.o nonexistent
The gl ob command returns alist of all file names that match the pattern “*. 0”, such as
“a.0 b.o c.0". Theexec command then attempts to invoke the r mprogram to delete
all of thesefiles. However, the entire list of filesis passed to r mas a single argument; r m
reports an error because it cannot find afilenamed “a. o b. o c. 0”. For r mto work
correctly theresult of gl ob must be split up into multiple words.

Fortunately, it is easy to add additional layers of parsing if you want them. Remember
that Tcl commands are evaluated in two phases: parsing and execution. The substitution
rules apply only to the parsing phase. Once Tcl passes the words of a command to a com-
mand procedure for execution, the command procedure can do anything it likeswith them.
Some commands will reparse their words, for example by passing them back to the Tcl
interpreter again. Eval isan example of such acommand, and it can be used to solve the
problems with r mabove:

eval exec rm[glob *.o0]
Eval concatenatesall of its arguments with spaces in-between and then evaluates the
result asaTcl script, at which point another round of parsing and evaluation occurs. In this
exampleeval receivesthree arguments. “exec”, “rnf,and“a. 0 b. o c. o”.Itcon-
catenatesthemto form the string“exec rm a. o b. o c. 0”. Whenthisstringis
parsed as a Tcl script it yields five words; each of the file namesis passed to exec and

DRAFT (8/12/93): Distribution Restricted

36

Tcl Language Syntax

then to the r mprogram as a separate argument, so the files are all removed successfully.
See Section 7.5 for more details on this.

Onefinal note. It is possible to use substitutionsin very complex ways but | urge you
not to do so. Substitutions work best when used in very simple ways such as
“set a $b".If you useagreat many substitutionsin asingle command, and particularly
if you use lots of backslashes, your codeis unlikely to be unreadable and it's also unlikely
towork reliably. In situations like these | suggest breaking up the offending command into
several commands that build up the argumentsin simple stages. Tcl provides several com-
mands, such asf or mat and| i st , that should make this easy to do.

DRAFT (8/12/93): Distribution Restricted

Chapter 4
Variables

4.1

Tcl supports two kinds of variables: simple variables and associative arrays. This chapter
describes the basiclfcommands for manipulating variables and arrays, and it also pro-
vides a more complete description of variable substitution. 8gle #.1 for a summary of

the commands discussed in this chapter

Simple variables and the set command

A simple Tcl variable consists of two things: a name and a value. Both the name and the
value may be arbitrary strings of characters. For example, it is possible to have a variable
named Xyz !'# 22" or “March earni ngs: $100, 472". In practice variable
names usually start with a letter and consist of a combination of letters, digits, and under-
scores, since that makes it easier to use variable substitution.
Variables may be created, read, and modified witls ¢tecommand, which takes
either one or two guments. The first gument is the name of a variable and the second, if
present, is a new value for the variable:
set a {Eggs: $2.18/dozen}
0O Eggs: $2.18/dozen
set a
0O Eggs: $2.18/dozen
set a 44
0 44

37

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

38

Variables

4.2

append var Nane val ue val ue ..?
Appends each of theval ue argumentsto variable var Nane, in order. If
var Nane doesn't exist then it is created with an empty value before
appending. The return value isthe new value of var Nane.

incr varNanme 2 ncrement?
Addsi ncr enent tothevalue of variablevar Nane. | ncr enent and
the old value of var Name must both be integer strings (decimal,
hexadecimal, or octal). If i ncr ement isomitted then it defaultsto 1. The
new valueis stored in var Nane as adecimal string and returned as the
result of the command.

set varNane ?val ue?
If val ue is specified, setsthe value of variablevar Nane toval ue. In
any case the command returns the (new) value of the variable.

unset var Nane ?var Name var Nane ..?
Deletes the variables given by the var Name arguments. Returns an empty
string.

Table 4.1. A summary of the basic commands for manipulating variables. Optional arguments are
indicated by enclosing them in question-marks.

The first command above creates anew variable a if it doesn’t already exist and setsits
valueto the character sequence “Eggs: $2. 18/ dozen”. Theresult of the command is
the new value of the variable. The second set command has only one argument: a. In this
form it simply returns the current value of the variable. The third set command changes
the value of a to 44 and returns that new value.

Although the final value of a looks like a decimal integer, it is stored as a character
string. Tcl variables can be used to represent many things, such as integers, floating-point
numbers, names, lists, and Tcl scripts, but they are always stored as strings. This use of a
single representation for all values allows different values to be manipulated in the same
way and communicated easily.

Tcl variables are created automatically when they are assigned values. Variables
don’'t have types so there is no need for declarations.

Arrays

In addition to simple variables Tcl also provides arrays. An array isacollection of ele-
ments, each of which is avariable with its own name and value. The name of an array ele-
ment has two parts. the name of the array and the name of the element within that array.
Both array names and element names may be arbitrary strings. For this reason Tcl arrays

DRAFT (8/12/93): Distribution Restricted

4.3 Variable substitution 39

4.3

are sometimes called associative arrays to distinguish them from arraysin other lan-
guages where the element names must be integers.

Array elements are referenced using notation likeear ni ngs(Januar y) wherethe
array name (ear ni ngs in this case) is followed by the element name in parentheses
(January inthiscase). Arrays may be used anywhere that simple variables may be used,
such asintheset command:

set earnings(January) 87966
0 87966
set earnings(February) 95400
0 95400
set earni ngs(January)
0 87966
Thefirst command creates an array named ear ni ngs, if it doesn’'t already exist. Then it
createsan element Januar y within the array, if it doesn’t already exist, and assignsit the
value 87966. The second command assigns avalue to the Febr uar y element of the
array, and the third command returns the value of the Januar y element.

Variable substitution

Chapter 3 introduced the use of $-notation for substituting variable values into Tcl
commands. This section describes the mechanism in more detail.

Variable substitution is triggered by the presence of an unquoted $ character in aTcl
command. The charactersfollowing the $ are treated as a variable name, and the $ and
name are replaced in the word by the value of the variable. Tcl provides three forms of
variable substitution. So far you have seen only the simplest form, which is used like this:

expr $a+2
In thisform the $ isfollowed by a variable name consisting of letters, digits, and under-
scores. Thefirst character that is not aletter or digit or underscore (“+” in the example)
terminates the name.

The second form of variable substitution allows array elementsto be substituted. This
form islike the first one except that the variable name is followed immediately by an ele-
ment name enclosed in parentheses. Variable, command, and backslash substitutions are
performed on the element name in the same way as a command word in double-quotes,
and spaces in the element name are treated as part of the name rather than as word separa-
tors. For example, consider the following script:

set yearTotal O
foreach nonth {Jan Feb Mar Apr May Jun Jul Aug Sep \

Cct Nov Dec} {
set yearTotal [expr $yearTotal +$ear ni ngs($nmont h)]

DRAFT (8/12/93): Distribution Restricted

40

Variables

Note:

4.4

Intheexpr command “$ear ni ngs($nont h) " isreplaced with the value of an ele-
ment of the array ear ni ngs. The element’s nameis given by the value of the nont h
variable, which varies from iteration to iteration.

Thelast form of substitution is used for smple variables in places where the variable
nameisfollowed by aletter or number or underscore. For example, suppose that you wish
to passavaluelike“1. 5 to acommand as an argument but the number isin avariable
si ze (in Tk you might do thisto specify asizein millimeters). If you try to substitute the
variable value with aform like “$si zend then Tcl will treat the mas part of the variable
name. To get around this problem you can enclose the variable name in braces as in the
following command:

.canvas configure -width ${size}m
You can also use braces to specify variable names containing characters other than letters
or numbers or underscores.
Braces can only be used to delimit simple variables. However, they shouldn't be needed
for arrays since the parentheses already indicate where the variable name ends.

Tcl’s variable substitution mechanism is only intended to handle the most common
situations; there exist scenarios where none of the above forms of substitution achievesthe
desired effect. More complicated situations can be handled with a sequence of commands.
For example, thef or mat command can be used to generate a variable name of almost
any imaginable form, set can be used to read or write the variable with that name, and
command substitution can be used to substitute the value of the variable into other com-
mands.

Removing variables: unset

Theunset command destroys variables. It takes any number of arguments, each of
which isavariable name, and removes al of the variables. Future attemptsto read the
variableswill result in errorsjust asif the variables had never been set in thefirst place.
The argumentsto unset may be either simple variables, elements of arrays, or whole
arrays, asin the following example:

unset a earni ngs(January) b

In this case the variables a and b are removed entirely and the Januar y element of the
ear ni ngs array isremoved. The ear ni ngs array continues to exist after theunset
command. If a or b isan array then all of the elements of that array are removed along
with the array itself.

DRAFT (8/12/93): Distribution Restricted

4.5 Multi-dimensional arrays 41

4.5 Multi-dimensional arrays
Tcl only implements one-dimensional arrays, but multi-dimensional arrays can be simu-
lated by concatenating multiple indices into a single el ement name. The program below
simulates atwo-dimensional array indexed with integers:
set matrix(1,1) 140
set matrix(1,2) 218
set matrix(1,3) 84
set i 1
set j 2
set cell $matrix($i, $j)
0 218
Mat r i x isan array with three elementswhose namesare“1, 1” and“1, 2” and“1, 3”.
However, the array behaves just asif it were atwo-dimensional array; in particular, vari-
able substitution occurs while scanning the element name in the expr command, so that
thevaluesof i andj get combined into an appropriate element name.
4.6 Theincr and append commands

I ncr and append provide smple ways to change the value of avariable. | ncr takes
two arguments, which are the name of avariable and an integer; it adds the integer to the
variable’'svalue, storesthe result back into the variable as a decimal string, and returns the
variable's new value as result:

set x 43
incr x 12
0 55

The number can have either a positive or negative value. It can also be omitted, in which
caseit defaultsto 1:

set x 43

Incr X

0 44
Both the variable’s original value and the increment must be integer strings, either in deci-
mal, octal (indicated by aleading 0), or hexadecimal (indicated by aleading 0x).
Theappend command adds text to the end of avariable. It takes two arguments,

which are the name of the variable and the new text to add. It appends the new text to the
variable and returns the variable’'s new value. The following example usesappend to
compute atable of squares:

DRAFT (8/12/93): Distribution Restricted

42

Variables

4.7

set nsg ""
foreach i {1 2 3 4 5} {
append nsg "$i squared is [expr $i*$i]\n"

set nsg
0 1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
Neither i ncr nor append adds any new functionality to Tcl, since the effects of
both of these commands can be achieved in other ways. However, they provide simple
ways to do common operations. In addition, append isimplemented in afashion that
avoids character copying. If you need to construct a very large string incrementally from
piecesit will be much more efficient to use acommand like

append x $pi ece
instead of acommand like
set x "xpi ece"

Preview of other variable facilities

Tcl provides anumber of other commands for manipulating variables. These com-
mands will be introduced in full after you' ve learned more about the Tcl language, but this
section contains a short preview of some of the facilities.

Thet r ace command can be used to monitor a variable so that a Tcl script gets
invoked whenever the variableis set or read or unset. Variable tracing is sometimes useful
during debugging, and it allows you to create read-only variables. You can also use traces
for propagation so that, for example, a database or screen display gets updated whenever a
variable changes value. Variable tracing is discussed in Section 13.4.

Thear r ay command can be used to find out the names of all the elementsin an
array and to step through them one at atime (see Section 13.1). It's possible to find out
what variables exist using thei nf o command (see Section 13.2).

Thegl obal and upvar commands can be used by a procedure to access variables
other than its own local variables. These commands are discussed in Chapter 8.

DRAFT (8/12/93): Distribution Restricted

Chapter 5
EXpressons

5.1

Expressions combine values @merands) with operatorsto produce new values. For
example, the expressioA+2” contains two operands4" and “2”, and one operator
“+" it evaluates t&®. Many Tcl commands expect one or more of thejjuanents to be
expressions. The simplest such commarekisr , which just evaluates itsguments as
an expression and returns the result as a string:

expr (8+4) * 6.2

0 74.4

Another example isf , which evaluates its firstgument as an expression and uses the
result to determine whether or not to evaluate its secquuirent as acl script:

if $x<2 then {set x 2}
This chapter uses tlexpr command for all of its examples, but the same syntax, substi-
tution, and evaluation rules apply to all other uses of expressions tocal3e&T for a
summary of thexpr command.

Numeric operands

Expression operands are normally integers or real numbers. Integers are usually specified
in decimal, but if the first character is 0 (zero) then the number is read in octal (base 8) and
if the first two characters afx then the number is read in hexadecimal (base 16). For
example 335 is a decimal numbed517 is an octal number with the same value, and

0x14f is a hexadecimal number with the same val9&. is not a valid integer: the lead-

ing 0 causes the number to be read in octaBhistnot a valid octal digit. Real operands

43

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

44

Expressions

Note:

5.2

expr arg 7arg arg ..?
Concatenates al the ar g values together (with spaces in between),
evaluates the result as an expression, and returns a string corresponding to
the expression’s value.

Table 5.1. A summary of theexpr command.

may be specified using most of the forms defined for ANSI C, including the following
examples:

2.1

7.91e+16

6E4
3.

These same forms are allowable not just in expressions but anywherein Tcl that an integer
or real valueisrequired.

Expression operands can also be non-numeric strings. String operands are discussed
in Section 5.5.

Operators and precedence

521

Note:

Table 5.2 lists al of the operators supported in Tcl expressions; they are similar to the
operators for expressionsin ANSI C. Horizontal lines separate groups of operators with
the same precedence, and operators with higher precedence appear in the table above
operators with lower precedence. For example, 4* 2<7 evaluatesto O because the* oper-
ator has higher precedence than <. Except in the simplest and most obvious cases you
should use parentheses to indicate the way operators should be grouped; this will prevent
errors by you or by others who modify your programs.

Operators with the same precedence group from left to right. For example, 10- 4- 3
isthesameas (10- 4) - 3; it evaluatesto 3.

Arithmetic operators

Tcl expressions support the arithmetic operators+, -, *, / , and % The - operator may be
used either as a binary operator for subtraction, asin 4- 2, or asaunary operator for nega-
tion,asin- (6*$i). The/ operator truncatesits result to an integer value if both oper-
ands are integers. %is the modulus operator: itsresult is the remainder when itsfirst
operand is divided by the second. Both of the operands for %must be integers.

The/ and % operators have a more consistent behavior in Tcl than in ANS C. In Tcl the
remainder is always positive and has an absol ute val ue less than the absol ute value of the

DRAFT (8/12/93): Distribution Restricted

5.2 Operators and precedence

45

Syntax Result Operand Types
-a Negative of a int, float
la Logical NOT: 1if a is zero, O otherwise int, float
~a Bit-wise complement of a int
a*b Multiply a and b int, float
alb Dividea by b int, float
a% Remainder after dividing a by b int
atb Addaandb int, float
a-b Subtract b froma int, float
a<<b Left-shift a by b bits int
a>>b Arithmetic right-shift a by b bits int
a<b 1if aislessthan b, O otherwise int, float, string
a>b 1if a isgreater than b, 0 otherwise int, float, string
a<=b 1if a islessthan or equal to b, O otherwise int, float, string
a>=b 1if a isgreater than or equal to b, 0 otherwise | int, float, string
a==b lif aisequa tob, O otherwise int, float, string
al =b lif aisnot equa tob, O otherwise int, float, string
a&b Bit-wise AND of a and b int
a"b Bit-wise exclusive OR of a and b int
alb Bit-wise OR of a and b int
a&&b Logical AND: 1if both a and b are non-zero, | int, float
0 otherwise
al|b Logical OR: 1if either a isnon-zeroor b is int, float
non-zero, 0 otherwise
a?b: ¢ | Choice: if aisnon-zerothenb, elsec a: int, float

Table 5.2. Summary of the operators allowed in Tcl expressions. These operators have the same
behavior asin ANS| C except that some of the operators allow string operands. Groups of operands

between horizontal lines have the same precedence; higher groups have higher precedence.

divisor. ANS C guarantees only the second property: In both ANS C and Tcl the quotient
will always have the property that (x/ y) *y + x% isx., for all x andy.

DRAFT (8/12/93): Distribution Restricted

46

Expressions

522

523

524

525

Relational operators

The operators < (less than), <= (less than or equal), >=(greater than or equal), > (greater
than), == (equal), and ! = (not equal) are used for comparing two values. Each operator
produces aresult of 1 (true) if its operands meet the condition and O (false) if they don't.

Logical operators

The logical operators&&, | | , and! aretypically used for combining the results of rela-
tional operators, asin the expression
($x > 4) && ($x < 10)

Each operator producesa0 or 1 result. && (logical “and”) producesal result if both its
operands are non-zero, | | (logical “or”) producesal result if either of its operandsis
non-zero, and ! (“not”) producesal result if its single operand is zero.

InTcl, asin ANSI C, azero value istreated as false and anything other than zero is
treated as true. Whenever Tcl generates atrue/false value it uses 1 for true and O for false.

Bitwise operators

Tcl provides six operators that manipulate the individual bits of integers: &, | , *, <<, >>,
and ~. These operators require their operandsto be integers. The &, |, and* operators
perform bitwise and, or, and exclusive or: each bit of the result is generated by applying
the given operation to the corresponding bits of the left and right operands. Note that &
and | do not aways produce the sameresult as&& and | | :
expr 8&&2
o1
expr 8&2
g o
The operators << and >> use the right operand as a shift count and produce a result
consisting of the left operand shifted |eft or right by that number of bits. During | eft shifts
zeros are shifted into the low-order bits. Right shifting is always “ arithmetic right shift”,
meaning that it shiftsin zeroes for positive numbers and ones for negative numbers. This
behavior is different from right-shifting in ANSI C, which is machine-dependent.
The ~ operand (“ones complement”) takes only a single operand and produces a
result whose bits are the opposite of those in the operand: zeroes replace ones and vice
versa

Choice operator

Theternary operator ?: may be used to select one of two results:
expr {(%a < $b) ? $a : $b}

DRAFT (8/12/93): Distribution Restricted

5.3 Math functions 47

5.3

This expression returns the smaller of $a and $b. The choice operator checks the value of
itsfirst operand for truth or falsehood. If it is true (non-zero) then the argument following
the ? is evaluated and becomes the result; if the first operand is false (zero) then the third
operand is evaluated and becomes the result. Only one of the second and third arguments
is evaluated.

Math functions

5.4

Tcl expressions support a number of mathematical functions such assi n and exp. Math
functions are invoked using standard functional notation:

expr 2*sin($x)

expr hypot ($x, $y) + $z
The arguments to math functions may be arbitrary expressions, and multiple arguments
are separated by commas. See Table 5.3 for alist of all the built-in functions.

Substitutions

Substitutions can occur in two ways for expression operands. The first way is through the
normal Tcl parser mechanisms, asin the following command:

expr 2*sin($x)
In this case the Tcl parser substitutes the value of variable x before executing the com-
mand, so the first argument to expr will have avalue such as“2* si n(0. 8) ". The sec-
ond way is through the expression evaluator, which performs an additional round of
variable and command substitution on the expression while evaluating it. For example,
consider the command:

expr {2*sin($x)}
In this case the braces prevent the Tcl parser from substituting the value of x, so the argu-
ment to expr is“2*si n($x) ”. When the expression evaluator encounters the dollar-
sign it performs variable substitution itself, using the value of variable x as the argument
tosin.

Having two layers of substitution doesn’t usually make any difference for the expr
command, but it is vitally important for other commands like whi | e that evaluate an
expression repeately and expect to get different results each time. For example, consider
the following script that raises a base to a power:

set result 1

whi l e {$power >0} {
set result [expr $result*$base]
incr power -1

DRAFT (8/12/93): Distribution Restricted

48

Expressions

Function Result

abs(x) Absolute value of x.

acos(x) Arc cosine of x, in therange 0 to T

asi n(x) Arcsine of x, in the range -T2 to 172.
at an(x) Arc tangent of X, in the range -172 to 102.
atan2(x,y) Arc tangent of x/y, in therange -1v2 to 2.
ceil (x) Smallest integer not lessthan x.

cos(x) Cosine of x (x in radians).

cosh(x) Hyperbolic cosine of x.

doubl e(i) Real value equal to integeri .

exp(x) eraised to the power Xx.

fl oor (x) Largest integer not greater than x.
fmod(x, y) Floating-point remainder of x divided by y.
hypot (X, y) Square root of (x2 +y?).

i nt(x) Integer value produced by truncating x.

I og(x) Natural logarithm of x.

| 0g10(x) Base 10 logarithm of x.

pow(X, y) X raised to the power y.

round(x) Integer value produced by rounding x.

si n(x) Sineof X (x in radians).

si nh(x) Hyperbolic sine of x.

sqrt(x) Square root of x.

tan(x) Tangent of X (X in radians).

t anh(x) Hyperbolic tangent of x.

Table 5.3. The mathematical functions supported in Tcl expressions. In most cases the functions
have the same behavior asthe ANSI C library procedures with the same names.

DRAFT (8/12/93): Distribution Restricted

The expression “$power >0" gets evaluated by whi | e at the beginning of each iteration
to decide whether or not to terminate the loop. It is essential that the expression evaluator
use anew value of power each time. If the variable substitution were performed while
parsing thewhi | e command, for example “whi | e $power >0
argument would be a constant expression such as“5>0"; either the loop would never exe-
cute or it would execute forever.

. thenwhi | e's

5.5 String manipulation 49

Note:

5.5

When the expression evaluator performs variable or command substitution the value
substituted must be an integer or real number (or a string, as described below). It cannot
be an arbitrary expression.

String manipulation

5.6

Unlike expressionsin ANSI C, Tcl expressions allow som simple string operations, asin
the following command:

if {$x == "New York"} {

}
In this exampl e the expression evaluator compares the value of variable x to the string
“New Yor k” using string comparison; the body of thei f will be executed if they are
identical. In order to specify a string operand you must either encloseit in quotes or braces
or use variable or command substitution. It isimportant that the expression in the above

exampleisenclosed in braces so that the expression evaluator substitutes the value of x; if
the braces are left out then the argument to i f will be astring like

Los Angel es == "New Yor k"
The expression parser will not be ableto parse “Los” (it isn't anumber, it doesn’t make
sense as afunction name, and it can’t be interpreted as a string because it isn't delimited)
so asyntax error will occur.

If astring is enclosed in quotes then the expression evaluator performs command,
variable, and backslash substitution on the characters between the quotes. If astring is
enclosed in braces then no substitutions are performed. Braces nest for stringsin expres-
sionsin the same way that they nest for words of a command.

The only operators that allow string operands are <, >, <=, >=, ==, and !=. For all
other operators the operands must be numeric. For operators like < the strings are com-
pared lexicographically using the system’s st r cnp library function; the sorting order
may vary from system to system.

Types and conversions

Tcl evaluates expressions numerically whenever possible. String operations are only per-
formed for the relational operators and only if one or both of the operands doesn’'t make
sense as anumber. Most operators permit either integer or real operands but afew, such as
<< and &, allow only integers.

If the operands for an operator have different types then Tcl automatically converts
one of them to the type of the other. If one operand is an integer and the other isareal then
the integer operand is converted to real. If one operand is a non-numeric string and the
other isan integer or real then the integer or real operand is converted to astring. The

DRAFT (8/12/93): Distribution Restricted

Expressions

result of an operation always has the same type as the operands except for relational oper-
atorslike <, which always produce 0/1 integer results. You can use the math function
doubl e to explicitly promote an integer to areal, andi nt and r ound to convert areal
value back to integer by truncation or rounding.

5.7 Precision

During expression evaluation Tcl representsintegers internally with the C typei nt ,
which provides at least 32 bits of precision on most machines. Real numbers are repre-
sented with with the C type doubl e, which is usually represented with 64-bit values
(about 15 decimal digits of precision) using the IEEE Floating Point Standard.

Numbers are kept in internal form throughout the evaluation of an expression and are
only converted back to strings when necessary, such aswhen expr returnsits result. Inte-
gers are converted to signed decimal strings without any loss of precision. When areal
value is converted to a string only six significant digits are retained by default:

expr 1.11111111 + 1.11111111
0 2.22222
If you would like more significant digits to be retained when real values are converted to
strings you can set thet ¢l _pr eci si on globa variable with the desired number of sig-
nificant digits:
set tcl_precision 12
expr 1.11111111 + 1.11111111
0 2.22222222
Thet cl _preci si on variableisused not just for theexpr command but anywhere
that a Tcl application converts areal number to a sting.

Note: If you set cl _preci si onto 17 on a machine that uses IEEE floating point, you will
guarantee that string conversions do not lose information: if anesgn esult is
converted to a string and then later used in a difiéiexpession, the internal form after
conversion back ém the string will be identical to the internal form befoepnverting to
the string.

DRAFT (8/12/93): Distribution Restricted

Chapter 6
Lists

6.1

Lists are used incl to deal with collections of things, such as all the users in a group or all
the files in a directory or all the options for a widget. Lists allow you to collect together

any number of values in one place, pass around the collection as a singlamediiayer

get the component values back again. A list is an ordered collectibamehts where

each element can have any string value, such as a nuar@sors hame, the name of a
window, or a word of a @ command. Lists are represented as strings with a particular
structure; this means that you can store lists in variables, type them to commands, and nest
them as elements of other lists.

This chapter describes the structure of lists and presents a dozen basic commands for
manipulating lists. The commands perform operations like creating lists, inserting and
extracting elements, and searching for particular elementsgbé= 61 for a summary).

There are othercl commands besides those described in this chapter that take lists as
armguments or return them as results; these other commands will be described in later chap-
ters.

Basic list structure and the lindex command

In its simplest form a list is a string containing any number of elements separated by
spaces or tabs. For example, the string

John Anne Mary Jim

51

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

52

Lists

concat list Aist ..?
Joins multiplelistsinto asinglelist (each element of each| i st becomesan
element of the result list) and returns the new list.

join list Z§oinString?
Concatenates list elements together withj oi nSt ri ng as separator and
returns the result.

| append var Nane val ue val ue ...?
Appendseach val ue tovariablevar Name asalist element and returnsthe
new value of the variable. Creates the variable if it doesn’t already exist.

lindex list index
Returnsthei ndex’th element from| i st .

linsert list index value value ..?
Returns a new list formed by inserting al of theval ue argumentsaslist
elements beforei ndex’th element of | i st .

list value value ..?
Returns a list whose elements are theval ue arguments.

Ilength Iist
Returns the number of elementsinl i st .

Irange list first |ast
Returnsalist consisting of elementsf i r st through| ast of I i st . If
| ast isend thenit selects all elements up to the end of thelist.

Ireplace list first last ?val ue value ..?
Returns a new list formed by replacing elementsf i r st through| ast of
| i st with zero or more new elements, each formed from oneval ue argu-
ment.

| search ?exact? ?gl ob? ?regexp? |ist pattern
Returnstheindex of thefirst elementinl i st that matchespatternor-1
if none. The optional switch selects a pattern-matching technique (default:
- gl ob).

I sort ?-ascii? ?integer? ?real ? ?comuand comand? \
?-increasi ng? ?decreasing? |ist
Returns a new list formed by sorting the elementsof | i st . The switches
determine the comparison function and sorted order (default: - asci i
-increasing).

split string ?splitChars?
Returnsalist formed by splittingst r i ng at instancesof spl i t Char s and
turning the characters between these instancesinto list elements.

Table 6.1. A summary of the list-related commandsin Tcl.

DRAFT (8/12/93): Distribution Restricted

6.2 Creating lists: concat, list, and llength 53

6.2

isalist with four elements. There can be any humber of elementsin alist, and each ele-
ment can be an arbitrary string. In the simple form above, elements cannot contain spaces,
but there is additional list syntax that allows spaces within elements (see below).
Thel i ndex command extracts an element from alist:
I i ndex {John Anne Mary Jin} 1
0 Anne
Li ndex takestwo arguments, alist and an index, and returns the selected element of the
list. Anindex of O corresponds to thefirst element of thelist, 1 corresponds to the second
element, and so on. If the index is outside the range of the list then an empty string is
returned.

When alist isentered in a Tcl command the list isusually enclosed in braces, asin
the above example. The braces are not part of thelist; they are needed on the command
line to pass the entire list to the command as a single word. When lists are stored in vari-
ables or printed out, there are no braces around them:

set x {John Anne Mary Jint
0 John Anne Mary Jim
Curly braces and backslashes within list elements are handled by the list commandsin
the same way that the Tcl command parser treats them in words. This means that you can
enclose alist element in bracesif it contains spaces, and you can use backslash substitu-
tion to get special characters such as bracesinto list elements. Braces are often used to nest
listswithin lists, asin the following example:
lindex {a b {c de} f} 2
O cde
Inthiscase element 2 of thelistisitself alist with three elements. Thereisno limit on how
deeply lists may be nested.

Creating lists: concat, list, and llength

Tcl provides two commands that combine strings together to produce lists: concat and
I i st . Each of these commands accepts an arbitrary number of arguments, and each pro-
ducesalist asaresult. However, they differ in the way they combine their arguments. The
concat command takes one or more lists as arguments and joins all of the elements of
the argument lists together into asingle large list:
concat {a b c} {de} f {ghi}

O abcdef ghi
Concat expectsits arguments to have proper list structure; if the arguments are not well-
formed lists then the result may not be awell-formed list either. In fact, all that concat
doesisto concatenate its argument strings into one large string with space characters
between the arguments. The same effect asconcat can be achieved using double-quotes:

DRAFT (8/12/93): Distribution Restricted

54

Lists

6.3

set x {a b c}

set y {d e}

set z [concat $x $y]
O abecde

set z "$x $y"

0O abcde
Thel i st command joinsits arguments together so that each argument becomes a
distinct element of the resulting list:
list {abc} {de} f {ghi}
O {abc} {de} f {ghi}
In this case, the result list contains only four elements. Thel i st command will always
produce alist with proper structure, regardliess of the structure of its arguments (it adds
braces or backslashes as needed), and thel i ndex command can always be used to
extract the original elementsof alist created with| i st . Theargumentstol i st need not
themselves be well-formed lists.
Thel | engt h command returns the number of elementsin alist:
Ilength {{a bc} {de} f {ghi}}
o 4
Ilength a
o1
Ilength {}
o o
Asyou can see from the examples, asimple string like “a” isa proper list with one ele-
ment and an empty string is a proper list with zero elements.

Modifying lists: linsert, Ireplace, Irange, and lappend

Thel i nsert command formsanew list by adding one or more elementsto an existing
list:
set x {a b {c d} e}
O ab{cd e
linsert $x 2 XY Z
O abXYZ{cd} e
linsert $x 0 {X Y} Z
O {XY} Zab{cd e
Li nsert takesthree or more arguments. Thefirst isalist, the second isthe index of an
element within that list, and the third and additional arguments are new elements to insert
into thelist. Thereturn valuefrom| i nsert isalist formed by inserting the new ele-
ments just before the element indicated by the index. If the index is zero then the new ele-

DRAFT (8/12/93): Distribution Restricted

6.3 Modifying lists: linsert, Ireplace, Irange, and lappend 55

ments go at the beginning of thelist; if it is one then the new elements go after thefirst
element inthe old list; and so on. If the index is greater than or equal to the number of ele-
ments in the original list then the new elements are inserted at the end of the list.

Thel r epl ace command deletes elements from alist and optionally adds new ele-
ments in their place. It takes three or more arguments. The first argument isalist and the
second and third arguments give the indices of thefirst and last elementsto be deleted. If
only three arguments are specified then the result isanew list produced by deleting the
given range of elements from the original list:

Ireplace {a b {c d} e} 3 3
O ab {c d}
If additional arguments are specifiedto | r epl ace asin the example below, then they
areinserted into the list in place of the elements that were deleted.
Ireplace {a b {c d} e} 1 2 {WX} Y Z
O a{wXxt Y Ze

Thel r ange command extracts arange of elementsfrom alist. It takes as arguments
alist and two indices and it returns a new list consisting of the range of elements that lie
between the two indices (inclusive):

set x {a b {c d} e}
O ab{cd e
I[range $x 1 3

O b {c d} e
Irange $x 0 1
O ab

Thel append command provides an efficient way to append new elementsto alist
stored in avariable. It takes as arguments the name of a variable and any number of addi-
tional arguments. Each of the additional argumentsis appended to the variable’'svalueasa
new list element and | append returns the variable’'s new value:

set x {a b {c d} e}
O ab{cd e
| append x XX {YY ZZ}
O ab {cd} e XX{YY zz}
set Xx
O ab {c d} e XX {YY 2z}
Lappend issimilar to append except that it enforces proper list structure. Aswith
append, it isn't strictly necessary. For example, the command
| append x $a $b $c
could be written instead as

set x "$x [list $a $b $c]"

DRAFT (8/12/93): Distribution Restricted

56

Lists

6.4

However, aswith append, | append isimplemented in away that avoids string copies.
For large lists this can make a big difference in performance.

Searching lists: Isearch

6.5

Thel sear ch command searches alist for an element with a particular value. It takes
two arguments, the first of which isalist and second of which is a pattern:
set x {John Anne Mary Jin}
| search $x Mary
g 2
I search $x Phil
o -1
Lsear ch returnstheindex of thefirst element in thelist that matchesthe pattern, or - 1 if
there was no matching element.
One of three different pattern matching techniques can be selected by specifying one
of the switches- exact , - gl ob, and - r egexp before the list argument:
| search -glob $x A*
0o 1
The - gl ob switch causes matching to occur with the rules of thest ri ng nat ch com-
mand described in Section 10.1. A - r egexp switch causes matching to occur with regu-
lar expression rules as described in Section 10.2, and - exact insists on an exact match
only. If no switch is specified then - gl ob isassumed by default.

Sorting lists: Isort

Thel sort command takes alist as argument and returns a new list with the same ele-
ments, but sorted in increasing lexicographic order:
I sort {John Anne Mary Jin}
O Anne JimJohn Mary
You can precede the list with any of several switchesto control the sort. For example,
- decr easi ng specifies that the result should have the “largest” element first and
- i nt eger specifies that the elements should be treated as integers and sorted according
to integer value:
| sort -decreasing {John Anne Mary Jin}
0 wMary John Ji m Anne
Isort {10 1 2}
0o 1102

DRAFT (8/12/93): Distribution Restricted

6.6 Converting between strings and lists: split and join 57

6.6

Isort -integer {10 1 2}
o 1210

You can usethe - conmaind option to specify your own sorting function (see the reference
documentation for details).

Converting between strings and lists: split and join

Thespl i t command breaks up a string into component pieces so that you can process
the pieces independently. It creates alist whose elements are the pieces, so that you can
use any of the list commands to process the pieces. For example, suppose a variable con-
tains a UNIX file name with components separated by slashes, and you want to convert it
to alist with one element for each component:

set x alb/c
set y /usr/include/sys/types.h

split $x /
O abec
split Sy /

O {} usr include sys types.h
Thefirst argument to spl i t isthe string to be split up and the second argument contains
one or more split characters. Spl i t locates all instances of any of the split charactersin
the string. It then creates a list whose elements consist of the substrings between the split
characters. The ends of the string are also treated as split characters. If there are consecu-
tive split characters or if the string starts or ends with a split character as in the second
example, then empty elements are generated in the result list. The split characters them-
selves are discarded. Severa split characters can be specified, asin the following example:

split xbaybz ab

O x{}yz

If an empty string is specified for the split characters then each character of the string is
made into a separate list element:

split {a b c} {}
O a{}b{}c
Thej oi n command is approximately theinverseof spl i t . It concatenates list ele-
ments together with a given separator string between them:
join {{} usr include sys types.h} /
O /usr/includel/sys/types.h

set x {24 112 5}
expr [join $x +]
0 141

DRAFT (8/12/93): Distribution Restricted

58

Lists

6.7

Joi n takestwo arguments: alist and aseparator string. It extracts all of the elementsfrom
the list and concatenates them together with the separator string between each pair of ele-
ments. The separator string can contain any humber of characters, including zero. In the
first example above afile name is generated by joining the list elementswith “/ ”. In the
second example a Tcl expression is generated by joining the list elements with “+”.

One of the most common usesfor spl i t andj oi nisfor dealing with file names as
shown above. Another common useisfor splitting up text into lines by using newline as
the split character.

Lists and commands

There isavery important relationship between lists and commandsin Tcl. Any proper list
isalso awell-formed Tcl command. If alist isevaluated asaTcl script then it will consist
of asingle command whose words are the list elements. In other words, the Tcl parser will
perform no substitutions whatsoever: it will simply extract the list elements with each ele-
ment becoming one word of the command. This property is very important because it
allows you to generate Tcl commands that are guaranteed to parse in a particular fashion
even if some of the command’s words contain specia characters like spaces or $.

For example, suppose you are creating a button widget in Tk, and when the user
clicks on the widget you would like to reset avariable to a particular value. You might cre-
ate such awidget with acommand like this:

button .b -text "Reset" -command {set x 0}
The Tcl script “set x 0" will be evaluated whenever the user clicks on the button. Now
suppose that the value to be stored in the variable is not constant, but instead is computed
just before the but t on command and must be taken from avariablei ni t Val ue. Fur-
thermore, supposethati ni t Val ue could contain any string whatsoever. You might
rewrite the command as

button .b -text "Reset" -command {set x $initVal ue}
Thescript “set x $i ni t Val ue” will be evaluated when the user clicks on the button.
However, thiswill usethe value of i ni t Val ue at the time the user clicks on the button,
which may not be the same as the value when the button was created. For example, the
same variable might be used to create several buttons, each with a different intended reset
value.

To solvethis problem you must generate a Tcl command that contains the value of the
i ni t Val ue variable, not its name, and use this as part of the - command option for the
but t on command. Unfortunately, a simple approach like

button .b -text "Reset" -command "set x $initVal ue"

will not work in general. If thevalue of i ni t Val ue is something simplelike 47 then
this will work fine: the resulting command will be“set x 47", which will produce the
desired result. However, what if i ni t Val ue contains“New Yor k”? In this case the

DRAFT (8/12/93): Distribution Restricted

6.7 Lists and commands 59

resulting command will be“set x New Yor k”, which has four words; set will gener-
ate an error because there are too many arguments. Even worse, what if i ni t Val ue con-
tains special characterslike “$” or “[”? These characters could cause unwanted
substitutions to occur when the command is evaluated.
The only solution that is guaranteed to work for any value of i ni t Val ue isto use

list commands to generate the command, as in the following example:

button .b -text "Reset" -conmmand [list set x $initValue]
Theresult of thel i st command isaTcl command whose first word will be set , whose
second word will be x, and whose third word will be the value of i ni t Val ue. The com-
mand will always produce the desired result: whatever valueisstoredini ni t Val ue at
thetimebut t on isinvoked will be stored in x when the widget isinvoked. For example,
suppose that thevalue of i ni t Val ue is“New Yor k”. The command generated by
[ist willbe“set x {New Yor k}”, which will parse and execute correctly. Any of
the Tcl special characterswill also be handled correctly by | i st :

set initValue {Earnings: $1410.13}

list set x $initValue

0 set x {Earnings: $1410.13}
set initValue "{ \\"
list set x $initValue
O set x \{\ \\

DRAFT (8/12/93): Distribution Restricted

60

Lists

DRAFT (8/12/93): Distribution Restricted

Chapter 7
Control Flow

7.1

This chapter describes thel Eommands for controlling the flow of execution in a script.
Tcl's control flow commands are similar to the control flow statements in the C program-
ming language andsh, includingi f , whi | e, f or,f oreach, swi t ch, andeval .

Table 7.1 summarizes these commands.

The if command

Thei f command evaluates an expression, tests its result, and conditionally executes a
script based on the result. For example, consider the following command, which sets vari-
ablex to zero if it was previously negative:

if {$x < 0} {
set x O
}

In this case f receives two guments. The first is an expression and the secondcis a T
script. The expression can have any of the forms for expressions described in Chapter 5.
Thei f command evaluates the expression and tests the result; if it is non-zerb then
evaluates thecT script. If the value is zero therf returns without taking any further
action.

| f commands can also include one or nedrsei f clauses with additional tests
and scripts, plus a final se clause with a script to evaluate if no test succeeds:

61

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

62

Control Flow

br eak
Terminates the innermost nested |ooping command.

conti nue
Terminates the current iteration of the innermost looping command and
goes on to the next iteration of that command.

eval arg ?arg arg ..?
Concatenates all of the ar g’s with separator spaces, then evaluates the
result as a Tcl script and returnsiits resullt.

for init test reinit body
Executesi ni t asaTcl script. Then evaluatest est as an expression. If it
evaluates to non-zero then executesbody asa Tcl script, executesr ei ni t
asaTcl script, and re-evaluatest est as an expression. Repeats until t est
evaluates to zero. Returns an empty string.

foreach varNane |ist body
For each element of | i st , in order, set variable var Nane to that value
and execute body asaTcl script. Returns an empty string. Li st must bea
valid Tcl list.

if testl 2 hen? bodyl ?elseif test2 ?hen? body2 elseif ..?2\
?el se? ?bodyn?
Evaluatest est as an expression. If its value is non-zero then executes
body1 asaTcl script and returnsits value . Otherwise evaluatest est 2 as
an expression; if its value is non-zero then executesbody 2 as a script and
returnsits value. If no test succeeds then executesbodyn asaTcl script
and returns its result.

source fil eNane
Reads the file whose nameisf i | eNane and evaluates its contents as a Tcl
script. Returns the result of the script.

switch ?2options? string pattern body ?pattern body ..?

switch 2options? string {pattern body 7pattern body ..7
Matchesst ri ng against each pat t er n in order until amatch isfound,
then executes the body corresponding to the matching pat t er n. If the
last pat t er nisdef aul t then it matches anything. Returns the result of
the body executed, or an empty string if no pattern matches. Opt i ons
may be any of - exact, - gl ob, -regexp,or--.

whil e test body
Evaluatest est as an expression. If its value is non-zero then executes
body asaTcl script and re-evaluatest est . Repeatsuntil t est evaluates
to zero. Returns an empty string.

Table 7.1. A summary of the Tcl commands for controlling the flow of execution.

DRAFT (8/12/93): Distribution Restricted

7.2 Looping commands: while, for, and foreach 63

7.2

it {$x < 0} {

} elseif {$x == 0} {
} elseif {$x == 1} {
} else {

}
This command will execute one of the four scriptsindicated by “...” depending on the
value of x. Theresult of the command will be the result of whichever script is executed. If
ani f command hasno el se clause and none of its tests succeeds then it returns an
empty string.

The argument el se isan optional “noiseword”. It isalso legal to havet hen noise
words after any of the expressionsto test. Theel sei f words are not optional: they are
needed to distinguish el sei f clausesfrom el se clauses.

Remember that the expressions and scriptsfor i f and other control flow commands
are parsed using the same approach as all argumentsto all Tcl commands. It isamost
alwaysagood ideato enclose the expressions and scriptsin braces so that substitutions are
deferred until the the command is executed. Furthermore, each open brace must be on the
same line as the preceding word or else the newline will be treated as a command separa-
tor. The following script is parsed as two commands, which probably isn’t the desired
result:

if {$x < 0}
{

set x O

Looping commands: while, for, and foreach

Tcl provides three commands for looping: whi | e, f or, andf or each. Wi | e andf or
are similar to the corresponding C statements and f or each is similar to the correspond-
ing feature of the csh shell. Each of these commands executes a nested script over and
over again; they differ in the kinds of setup they do before each iteration and in the ways
they decide to terminate the loop.

Thewhi | e command takes two arguments: an expression and a Tcl script. It evalu-
ates the expression and if the result is non-zero then it executes the Tcl script. This process
repeats over and over until the expression evaluates to zero, at which point thewhi | e
command terminates and returns an empty string. For example, the script below copies a
list from variable b to variable a, reversing the order of the elements along the way:

DRAFT (8/12/93): Distribution Restricted

Control Flow

set b ""
set i [expr [llength $a] -1]
while {$i >= 0} {
| append b [lindex $a $i]
incr i -1
}

Thef or command issimilar towhi | e except that it provides more explicit loop
control. The program to reverse the elements of alist can be rewritten usingf or asfol-
lows:

set b ""
for {set i [expr [Ilength $a]-1]} {$i >= 0} {incr i -1} {
| append b [lindex $a $i]

Thefirst argument to f or isan initialization script, the second is an expression that deter-
mines when to terminate the loop, the third is areinitialization script, which is evaluated
after each execution of the loop body before evaluating the test again, and the fourth argu-
ment is a script that forms the body of the loop. For executesits first argument (the ini-
tialization script) as a Tcl command, then eval uates the expression. If the expression
evaluates to non-zero, then f or executes the body followed by the reinitialization script
and re-evaluates the expression. It repeats this sequence over and over again until the
expression evaluates to zero. If the expression evaluates to zero on the first test then nei-
ther the body script nor the reinitialization script is ever executed. Likewhi | e, f or
returns an empty string as result.

For andwhi | e are equivalent in that anything you can write using one command
you can also write using the other command. However, f or has the advantage of placing
all of theloop control information in one place whereit is easy to see. Typically theinitial-
ization, test, and re-initialization arguments are used to select a set of elements to operate
on (integer indices in the above example) and the body of the loop carries out the opera-
tions on the chosen elements. This clean separation between element selection and action
makes f or loops easier to understand and debug. Of course, there are some situations
where a clean separation between selection and action is not possible, and in these cases a
whi | e loop may make more sense.

Thef or each command iterates over al of the elements of alist. For example, the
following script provides yet another implementation of list reversal:

set b "";

foreach i $a {
set b [linsert $b 0 $i]
}

For each takes three arguments. The first is the name of avariable, the second isalist,
and the third isa Tcl script that forms the body of the loop. For each will execute the
body script once for each element of the list, in order. Before executing the body in each
iteration, f or each setsthe variableto hold the next element of thelist. Thusif variablea
hasthevalue“fi rst second third” intheabove example, the body will be exe-

DRAFT (8/12/93): Distribution Restricted

7.3 Loop control: break and continue 65

7.3

cuted threetimes. Inthefirstiterationi will havethevaluef i r st , inthe second iteration
it will have the value second, and in the third iteration it will have the valuet hi r d. At
the end of the loop, b will havethevalue“t hi rd second first” andi will havethe
value“t hi r d”. Aswiththe other looping commands, f or each alwaysreturns an empty
string.

Loop control: break and continue

7.4

Tcl provides two commands that can be used to abort part or all of alooping command:
br eak and cont i nue. These commands have the same behavior as the corresponding
statementsin C. Neither takes any arguments. The br eak command causes the innermost
enclosing looping command to terminate immediately. For example, suppose that in the
list reversal example aboveit is desired to stop as soon as an element equal to ZZZ is
found in the source list. In other words, the result list should consist of areversal of only
those source elements up to (but not including) aZZZ element. This can be accomplished
with br eak asfollows:
set b "";
foreach i $a {
if {$i == "ZzZ"} break
set b [linsert $b 0 $i]
}

Thecont i nue command causes only the current iteration of the innermost loop to
be terminated; the loop continues with its next iteration. In the case of whi | e, this means
skipping out of the body and re-eval uating the expression that determines when the loop
terminates; inf or loops, the re-initialization script is executed before re-evaluating the
termination condition. For example, the following program is another variant of the list
reversal example, where ZZZ elements are simply skipped without copying them to the
result list:

set b "";

foreach i $a {
if {$i == "ZZZ"} continue
set b [linsert $b 0 $i]

The switch command

Theswi t ch command tests avalue against anumber of patterns and executes one of
several Tcl scripts depending on which pattern matched. The same effect asswi t ch can
be achieved withani f command that haslotsof el sei f clauses, but swi t ch provides
amore compact encoding. Tcl’sswi t ch command has two forms; here is an example of
the first form:

DRAFT (8/12/93): Distribution Restricted

66

Control Flow

switch $x {a {incr t1} b {incr t2} c {incr t3}}
Thefirst argument to swi t ch isthe value to be tested (the contents of variable x in the
example). The second argument isalist containing one or more pairs of elements. Thefirst
argument in each pair is a pattern to compare against the value, and the second is a script
to executeif the pattern matches. The swi t ch command steps through these pairsin
order, comparing the pattern against the value. As soon as it finds a match it executes the
corresponding script and returns the value of that script asits value. If no pattern matches
then no script is executed and swi t ch returns an empty string. This particular command
incrementsvariablet 1 if x hasthevauea, t 2 if x hasthevalueb, t 3 if x hasthe value
¢, and does nothing otherwise.

The second form spreads the patterns and scripts out into separate arguments rather

than combining them al into one list:

switch $x a {incr t1} b {incr t2} c {incr t3}
This form has the advantage that you can invoke substitutions on the pattern arguments
more easily, but most people prefer the first form because you can easily spread the pat-
terns and scripts across multiple lines like this:

switch $x {
a {incr t1}
b {incr t2}
c {incr t3}
}

The outer braces keep the newlines from being treated as command separators. With the
second form you would have to use backslash-newlines like this:
switch $x \
a {incr t1} \
b {incr t2} \
c {incr t3} \
}

The swi t ch command supports three forms of pattern matching. You can precede
the value to test with a switch that selects the form you want: - exact selects exact com-
parison, - gl ob selects pattern matching asinthest ri ng mat ch command (see Sec-
tion 10.1 for details) and - r egexp selects regular-expression matching as described in
Section 10.2. The default is- gl ob.

If thelast patterninaswi t ch command isdef aul t then it matches any value. Its
script will thus be executed if no other patterns match. For example, the script below will
examine alist and produce three counters. Thefirst, t 1, counts the number of elementsin
thelist that contain an a. The second, t 2, countsthe number of elements that are unsigned
decimal integers. Thethird, t 3, counts all of the other elements:

DRAFT (8/12/93): Distribution Restricted

7.5 Eval 67
set t1 0
set t2 0
set t3 0
foreach i $x {
switch -regexp $i in {
a {incr t1}
A[0-9]*$ {incr t2}
def aul t {incr t3}
}
}

If ascriptinaswi t ch commandis*“- " then swi t ch uses the script for the next
pattern instead. This makesit easy to have several patternsthat all execute the same script,
asin the following example:

switch $x {
a -
b -
c {incr t1}
d {incr t2}

}

This script incrementsvariablet 1 if X isa, b, or ¢ and it incrementst 2 if x isd.
7.5 Eval

Eval isagenera-purpose building block for creating and executing Tcl scripts. It accepts
any number of arguments, concatenates them together with separator spaces, and then exe-
cutesthe result asaTcl script. One use of eval isfor generating commands, saving them
in variables, and then later evaluating the variables as Tcl scripts. For example, the script

set cmd "set a 0"

eval $cmd
clearsvariable a to 0 when theeval command isinvoked.

Perhaps the most important use for eval isto force another level of parsing. The Tcl
parser performs only level of parsing and substitution when parsing a command; the
results of one substitution are not reparsed for other substitutions. However, there are
occasionally times when another level of parsing isdesirable, and eval providesthe
mechanism to achieve this. For example, suppose that avariablevar s containsalist of
variables and that you wish to unset each of these variables. One solution isto use the fol-
lowing script:

foreach i $vars {
unset $i
}

DRAFT (8/12/93): Distribution Restricted

68

Control Flow

Note:

7.6

This script will work just fine, but theunset command takes any number of arguments
so it should be possible to unset all of the variables with a single command. Unfortunately
the following script will not work:

unset $vars
The problem with this script isthat all of the variable names are passedtounset asasin-
gle argument, rather than using a separate argument for each name. The solution isto use
eval , aswith the following command:

eval unset $vars
Eval generatesastring consisting of “unset ” followed by the list of variable names
and then passes the string to Tcl for evaluation. The string gets re-parsed so each variable
name ends up in adifferent argument tounset .
This appoach works even if some of the variable names contain spaces or special
characters such aB. As described in Section 6.7, the only safe way to geneatlate T
commands is using list operations such ast andconcat . The commandéeval
unset $var s”isidentical to the commandeéval [concat unset $vars]”;in

either case the script evaluateddwyal is a poper list whose first element isfiset ”
and whose other elementsdhe elements ofar s.

Executing from files: source

The sour ce command is similar to the command by the same namein thecsh shell: it
reads a file and executes the contents of the file asa Tcl script. It takes a single argument
that contains the name of the file. For example, the command

source init.tcl
will execute the contents of thefilei ni t . t cl . Thereturn value from sour ce will be
the value returned when the file contents are executed, which is the return value from the
last command in thefile. In addition, sour ce allowsther et ur n command to beused in
the file's script to terminate the processing of the file. See Section 8.1 for more informa-
tiononr et urn.

DRAFT (8/12/93): Distribution Restricted

Chapter 8
Procedures

8.1

A Tcl procedure is a command that is implemented witbl acript rather than C code.

You can define new procedures at any time witlptteec command described in this
chapterProcedures make it easy for you to package up solutions to problems so that they
can be re-used easigrocedures also provide a simple way for you to prototype new fea-
tures in an application: once you've tested the procedures, you can reimplement them in C
for higher performance; the C implementations will appear just like the original proce-
dures so none of the scripts that invoke them will have to change.

Tcl provides special commands for dealing with variable scopes. Among other things,
these commands allow you to pasguanents by reference instead of by value and to
implement new @l control structures as procedureablt 8.1 summarizes theltom-
mands related to procedures.

Procedure basics: proc and return

Procedures are created with greoc command, as in the following example:

proc plus {a b} {expr $a+$b}
The first agument tgpr oc is the name of the procedure to be cregiéds in this case.
The second gument is a list of names ofgarments to the procedura @ndb in the
example). The third gument tagpr oc is a Tl script that forms the body of the new pro-
cedurePr oc creates a new command and arranges that whenever the command is
invoked the procedurgbody will be evaluated. In this case the new command will have
the namepl us; whenevepl us is invoked it must receive twoguments. While the

69

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

70

Procedures

gl obal nanel ?Zname2 ..?
Binds variable namesnanel, nane2, etc. to global variables. References
to these names will refer to global variables instead of local variables for
the duration of the current procedure. Returns an empty string.

proc nane argList body
Defines a procedure whose nameis nane, replacing any existing command
by that name. Ar gLi st isalist with one element for each of the
procedure’s arguments, and body contains a Tcl script that isthe
procedure’s body. Returns an empty string.

return ?options?al ue?
Returns from the innermost nested procedure or sour ce command with
val ue astheresult of the procedure. Val ue defaults to an empty string.
Additiona options may be used to trigger an exceptional return (see
Section 9.4).

upl evel A evel? arg ?arg arg ..?
Concatenates all of the ar g’s with spaces as separators, then executes the
resulting Tcl script in the variable context of stack level | evel . Level
consists of anumber or a number preceded by #, and defaultsto - 1.
Returns the result of the script.

upvar 2 evel ? otherVarl nmyVarl ?2otherVar2 nyVar2 ..?
Bindsthe local variable namenyVar 1 to the variable at stack level | evel
whose nameisot her Var 1. For the duration of the current procedure,
variable referencesto my Var 1 will be directed to ot her Var 1 instead.
Additional bindings may be specified with ot her Var 2 and myVar 2, etc.
Level hasthe same syntax and meaning asfor upl evel and defaultsto -

1. Returns an empty string.

Table 8.1. A summary of the Tcl commands related to procedures and variable scoping.

body of pl us isexecuting the variablesa and b will contain the values of the arguments.
The return value from the pl us command is the value returned by the last command in
pl us’sbody. Here are some correct and incorrect invocations of pl us:
plus 3 4
o 7
plus 3 -1
g 2
plus 1
O no value given for parameter "b" to "plus"
If you wish for a procedure to return early without executing its entire script, you can
invokether et ur n command: it causes the enclosing procedure to return immediately

DRAFT (8/12/93): Distribution Restricted

8.2 Local and global variables 71

8.2

and the argument to r et ur n will be the result of the procedure. Here is an implementa-
tion of factorial that usesr et ur n:
proc fac x {
if {$x <= 1} {
return 1

}

expr $x * [fac [expr $x-1]]
}
fac 4

o 24
fac O
o1
If the argument to f ac islessthan or equal to onethen f ac invokesr et ur n to return
immediately. Otherwise it executes the expr command. Theexpr command isthe last
one in the procedure’s body, so itsresult is returned as the result of the procedure.

Local and global variables

When the body of a Tcl procedure is evaluated it uses a different set of variables from its
caller. These variables are called local variables, since they are only accessible within the
procedure and are deleted when the procedure returns. Variables referenced outside any
procedure are called global variables. It is possible to have alocal variable with the same
name as a global variable or alocal variable in another active procedure, but these will be
different variables: changes to one will not affect any of the others. If aprocedureis
invoked recursively then each recursive invocation will have a distinct set of local vari-
ables.

The arguments to a procedure are just local variables whose values are set from the
words of the command that invoked the procedure. When execution beginsin a procedure,
the only local variables with values are those corresponding to arguments. Other local
variables are created automatically when they are set.

A procedure can reference global variables with the gl obal command. For exam-
ple, the following command makes the global variables x and y accessible inside a proce-
dure:

gl obal x vy
Thegl obal command treats each of its arguments as the name of aglobal variable and
sets up bindings so that references to those names within the procedure will be directed to
global variablesinstead of local ones. G obal canbeinvoked at any time during a proce-
dure; once it has been invoked, the bindings will remain in effect until the procedure
returns.

DRAFT (8/12/93): Distribution Restricted

72

Procedures

Note:

8.3

Tcl does not prvide a form of variable equivalent to “static” variables in C, whick ar
limited in scope to a given @edue but have values that persist ass calls to the
procedue. In Tl you must use global variables for purposes like tlisavbid name
conflicts with other such variables you should include the name ofdbedue or the
name of its enclosing package in the variable name, for example

“Hypertext _nunii nks”.

Defaults and variable numbers of arguments

In the examples so far, the second argument to pr oc (which describes the argumentsto
the procedure) has taken a simple form consisting of the names of the arguments. Three
additional features are available for specifying arguments. First, the argument list may be
specified as an empty string. In this case the procedure takes no arguments. For example,
the following command defines a procedure that prints out two global variables:
proc printVars {} {
global a b
puts "ais $a, b is $b"
}

The second additional feature is that defaults may be specified for some or all of the
arguments. The argument list is actually alist of lists, with each sublist corresponding to a
single argument. If a sublist has only a single element (which has been the case up until
now) that element is the name of the argument. If a sublist has two arguments, thefirst is
the argument’s name and the second is a default value for it. For example, hereis a proce-
dure that increments a given value by a given amount, with the amount defaulting to 1:

proc inc {value {increnent 1}} {
expr $val ue+$i ncr enent
}

Thefirst element in the argument list, val ue, specifies aname with no default value. The
second element specifies an argument with namei ncr enent and adefault value of 1.
Thismeansthat i nc can be invoked with either one or two arguments:
inc 42 3
0 45
inc 42
0 43
If adefault isn’t specified for an argument in the pr oc command then that argument must
be supplied whenever the procedure is invoked. The defaulted arguments, if any, must be
the last arguments for the procedure: if a particular argument is defaulted then all the argu-
ments after it must also be defaulted.
The third special feature in argument lists is support for variable numbers of argu-
ments. If the last argument in the argument list is the special value ar gs, then the proce-
dure may be called with varying numbers of arguments. Arguments before ar gs in the

DRAFT (8/12/93): Distribution Restricted

8.4 Call by reference: upvar 73

8.4

argument list are handled as before, but any number of additional arguments may be spec-
ified. The procedure’slocal variable ar gs will be set to alist whose elements are all of
the extra arguments. If there are no extra arguments then ar gs will be set to an empty
string. For example, the following procedure takes any number of arguments and returns
their sum:

proc sum args {

set s O

foreach i $args {
incr s $i

}

return $s

suml 2 345
0o 15
sum
o o
If aprocedure’s argument list contains additional arguments before ar gs then they may
be defaulted as described above. Of course, if this happens there will be no extra argu-
ments so ar gs will be set to an empty string. No default value may be specified for
ar gs: the empty string isits default.

Call by reference: upvar

Theupvar command provides a general mechanism for accessing variables outside the
context of aprocedure. It can be used to access either global variables or local variablesin
some other active procedure. Most often it is used to implement call-by-reference argu-
ment passing. Here is asimple example of upvar in aprocedure that prints out the con-
tents of an array:
proc parray nane {
upvar $nane a
foreach el [lsort [array names a]] {
puts "$el = $a($el)"
}
}

set info(age) 37

set info(position) "Vice President"

parray info

0 age = 37

position = "Vice President”
When par r ay isinvoked it is given the name of an array as argument. Theupvar com-
mand then makes this array accessible through alocal variable in the procedure. The first
argument to upvar isthe name of avariable accessible to the procedure’'s caller. This

DRAFT (8/12/93): Distribution Restricted

74

Procedures

Note:

8.5

may be either aglobal variable, asin the example, or alocal variable in a calling proce-
dure. The second argument is the name of alocal variable. Upvar arranges things so that
accessesto local variable a will actually refer to the variable in the caller whose nameis
given by variable nane. In the example this means that when par r ay reads elements of
a itisactually reading elements of thei nf o global variable. If par r ay weretowritea it
would modify i nf 0. Par r ay usesthe“ar ray names” command to retrieve alist of
all the elementsin the array, sorts them with | sor t , then prints out each the elementsin
order.
In the example it appears asif the output is returned as the procedure’s result; in fact it is
printed directly to standard output and the result of the procedure is an empty string.
Thefirst variable namein an upvar command normally refers to the context of the

current procedure’s caller. However, it is also possible to access variables from any level
on the call stack, including global level. For example,

upvar #0 other x
makes global variable ot her accessiblevialoca variable x (the #0 argument specifies
that ot her should beinterpreted asaglobal variable, regardless of how many nested pro-
cedure calls are active), and

upvar -2 other x
makes variable ot her in the caller of the caller of the current procedure accessible as
local variable x (- 2 specifies that the context of ot her is 2 levelsup the call stack). See
the reference documentation for more information on specifying alevel inupvar .

Creating new control structures: uplevel

Theupl evel command isacross between eval and upvar . It evaluatesits argu-
ment(s) as ascript, just like eval , but the script is evaluated in the variable context of a
different stack level, likeupvar . Withupl evel you can define new control structuresas
Tcl procedures. For example, here is anew control flow command called do:
proc do {varNane first |ast body} {
upvar $var Name v
for {set v $first} {$v <= $last} {incr v} {
upl evel $body
}

}
Thefirst argument to do isthe name of avariable. Do setsthat variable to consecutive
integer values in the range between its second and third arguments, and executes the
fourth argument as a Tcl command once for each setting. Given this definition of do, the
following script creates alist of squares of thefirst five integers:

DRAFT (8/12/93): Distribution Restricted

8.5 Creating new control structures: uplevel 75

Note:

set a {}
doi 15 {
| append a [expr $i*$i]

set a
O 14916 25

Thedo procedureusesupvar to accesstheloop variable (i inthe example) aslocal vari-
ablev. Then it usesthef or command to increment the loop variable through the desired
range. For each value it invokes upl evel to execute the loop body in the variable con-
text of the caller; this causes references to variablesa and i in the body of the loop to
refer to variablesindo’scaller. If eval were used instead of upl evel thena andi
would be treated as local variablesin do, which would not produce the desired effect.
This implementation afo does not handle exceptional conditionsperly. For example,
if the body of the loop containg @t ur n command it will only cause tlie procedue to
return, which is ma like the behavior dir eak. If ar et ur n occurs in the body of a
built-in contol-flow command liké or orwhi | e then it causes the pcedue that
ian(()jked the command teturn. In Chapter 9 you will see how to implement this behavior
or do.

Aswithupvar, upl evel takesan optional initial argument that specifies an
explicit stack level. See the reference documentation for details.

DRAFT (8/12/93): Distribution Restricted

76

Procedures

DRAFT (8/12/93): Distribution Restricted

Chapter 9
Errorsand Exceptions

9.1

As you have seen in previous chapters, there are many things that can result in errors in
Tcl commands. Errors can occur because a command tegist, or because it doesn’
receive the right number ofgarments, or because thgaments have the wrong form, or
because some other problem occurs in executing the command, such as an error in a sys-
tem call for file I/O. In most cases errors represent severe problems that make it impossi-
ble for the application to complete the script it is processicls rror facilities are
intended to make it easy for the application to unwind the work in progress and display an
error message to the user that indicates what went wrong. Presumably the user will fix the
problem and retry the operation.

Errors are just one example of a more general phenomenoneaiptions. Excep-
tions are events that cause scripts to be aborted; they inclualegak, cont i nue, and
r et ur n commands as well as errors! @llows exceptions to be “caught” by scripts so
that only part of the work in progress is unwound. After catching an exception the script
can ignore it or take steps to recover from it. If the scripttcanbver then it can reissue
the exception. dble 9.1 summarizes theltommands related to exceptions.

What happens after an error?

When a €l error occurs the current command is aborted. If that command is part of a
larger script then the script is also aborted. If the error occurs while executthgrade-

dure, then the procedure is aborted, along with the procedure that called it, and so on until
all the active procedures have aborted. After@lbCtivity has been unwound in this way
control eventually returns to C code in the application, along with an indication that an

77

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

78

Errors and Exceptions

cat ch command varName?
Evaluates commandas a Tcl script and returns an integer code that
identifies the completion status of the command. If varName is specified
then it gives the name of avariable, which will be modified to hold the
return value or error message generated by command

error message 7nfo ? ?code?
Generates an error with message asthe error message. If info is
specified and is not an empty string then it is used to initialize the
errorl nf ovariable. If code is specified theniit is stored in the
err or Code variable.

return -code code ?-errorinfo info ? ?-errorcode code? ?string ?
Causes the current procedure to return an exceptional condition. Code
specifies the condition and must be ok, err or, r et ur n, br eak,
cont i nue, or aninteger. The- er r or i nf o option may be used to
specify astarting value for theer r or | nf o variable, and - er r or code
may be used to specify avaluefor theer r or Code variable. String
givesthe return value or error message associated with the return; it
defaults to an empty string.

Table 9.1. A summary of the Tcl commands related to exceptions.

error occurred and a message describing the error. It is up to the application to decide how
to handle this situation, but most interactive applications will display the error message for
the user and continue processing user input. In a batch-oriented application where the user
can't see the error message and adjust future actions accordingly, the application might
print the error message into alog and abort.
For example, consider the following script, which isintended to sum the elements of a

list:

set list {44 16 123 98 57}

set sumO

foreach el $list {
set sum [expr $sumt$el ement]
}

0 can't read "element": no such variable

This script isincorrect because there is no variable el enent : the variable name el e-
ment intheexpr command should have been el to match the loop variable for the

f or each command. When the script is executed an error will occur as Tcl parsesthe
expr command: Tcl will attempt to substitute the value of variableel enent but will not
be able to find a variable by that name, so it will signal an error. This error indication will
be returned to the f or each command, which had invoked the Tcl interpreter to evaluate
the loop body. When f or each seesthat an error has occurred, it will abort itsloop and
return the same error indication as its own result. Thisin turn will cause the overall script

DRAFT (8/12/93): Distribution Restricted

9.2 Generating errors from Tcl scripts 79

9.2

to be aborted. The error message “can’t read "element": no such vari-
able " will be returned along with the error, and will probably be displayed for the user.
In many cases the error message will provide enough information for you to pinpoint
where and why the error occurred so you can avoid the problem in the future. However, if
the error occurred in a deeply nested set of procedure calls the message al one may not pro-
vide enough information to figure out where the error occurred. To help pinpoint the loca-
tion of the error, Tcl creates a stack trace as it unwinds the commands that were in
progress, and it stores the stack trace in the global variable errorinfo . The stack trace
describes each of the nested callsto the Tcl interpreter. For example, after the above error
errorinfo will have the following value:
can't read "element": no such variable
while executing
"expr $sum+$element”
invoked from within
"set sum [expr $sum+$element]..."
("foreach" body line 2)
invoked from within
"foreach el $list {
set sum [expr $sum+$element]
p

Tcl provides one other piece of information after errors, in the global variable
errorCode .ErrorCode hasaformat that iseasy to processwith Tcl scripts; it is most
commonly used in Tcl scripts that attempt to recover from errors using the catch com-
mand described below. TheerrorCode variable consists of alist with one or more ele-
ments. The first element identifies a general class of errors and the remaining elements
provide more information in aclass-dependent fashion. For example, if thefirst element of
errorCode isPOSIXthen it meansthat an error occurred in a POSIX system call.
ErrorCode will contain two additional elements giving the POSIX name for the error,
such as ENOENTand a human-readable message describing the error. See the reference
documentation for a complete description of al the formserrorCode can take, or refer
to the descriptions of individual commandsthat set errorCode |, such asthose in Chapter
11 and Chapter 12.

TheerrorCode variableisalate-comer to Tcl and isonly filled in by afew com-
mands, mostly dealing with file access and child processes. If acommand generates an
error without setting errorCode then Tcl fillsit in with the value NONE

Generating errors from Tcl scripts

Most Tcl errors are generated by the C code that implements the Tcl interpreter and the
built-in commands. However, it is also possible to generate an error by executing the
error Tcl command as in the following example:

DRAFT (8/12/93): Distribution Restricted

80

Errors and Exceptions

9.3

if {($x <0} || ($x > 100)} {
error "x is out of range ($x)"
}

Theer r or command generates an error and uses its argument as the error message.

Asamatter of programming style, you should only usetheer r or command in situ-
ations where the correct action is to abort the script being executed. If you think that an
error islikely to be recovered from without aborting the entire script, then it is probably
better to use the normal return value mechanism to indicate success or failure (e.g. return
one value from a command if it succeeded and another if it failed, or set variables to indi-
cate success or failure). Although it is possible to recover from errors (you' Il see how in
Section 9.3 below) the recovery mechanism is more complicated than the normal return
value mechanism. Thusit’s best to generate errors only in situations where you won't usu-
aly want to recover.

Trapping errors with catch

Errorsgenerally cause al active Tcl commandsto be aborted, but there are some situations
where it is useful to continue executing a script after an error has occurred. For example,
suppose that you want to unset variable x if it exists, but it may not exist at the time of the
unset command. If you invokeunset on avariable that doesn’t exist then it generates
an error:
unset X
0 can'tunset "x": no such variable
You can use the cat ch command to ignore the error in this situation:
catch {unset x}
o1
The argument to cat ch isaTcl script, which cat ch evaluates. If the script completes
normally then cat ch returns 0. If an error occursin the script then cat ch trapsthe error
(so that the cat ch command itself is not aborted by the error) and returns 1 to indicate
that an error occurred. The example above ignores any errorsinunset so x isunset if it
existed and the script has no effect if x didn’t previously exist.

The cat ch command can also take a second argument. If the argument is provided
then it isthe name of avariable and cat ch modifiesthe variableto hold either the script’s
return value (if it returns normally) or the error message (if the script generates an error):

catch {unset x} nsg
o1
set nsg
0 can'tunset "x": no such variable

DRAFT (8/12/93): Distribution Restricted

9.4 Exceptions in general 81

9.4

Inthiscasetheunset command generates an error so ms g is set to contain the error mes-
sage. If variable x had existed then unset would have returned successfully, so thereturn
value from cat ch would have been 0 and nsg would have contained the return value
from theunset command, which isan empty string. Thislonger form of cat ch isuse-
ful if you need access to the return value when the script completes successfully. It's also
useful if you need to do something with the error message after an error, such aslogging it
to afile.

Exceptions in general

Note:

Errors are not the only thingsin Tcl that cause work in progress to be aborted. Errors are
just one example of a set of events called except i ons. In addition to errorsthere are
three other kinds of exceptionsin Tcl, which are generated by the br eak, cont i nue,
and r et ur n commands. All exceptions cause active scripts to be aborted in the same
way, except for two differences. First, theer r or | nf o and er r or Code variables are
only set during error exceptions. Second, the exceptions other than errors are almost
always caught by an enclosing command, whereas errors usually unwind all the work in
progress. For example, br eak and cont i nue commands are normally invoked inside a
looping command such asf or each; f or each will catch break and continue exceptions
and terminate the loop or skip to the next iteration. Similarly, r et ur n isnormally only
invoked inside aprocedure or afile being sour ce’d. Both the procedure implementation
and the sour ce command catch return exceptions.

If abr eak or cont i nue command is invoked outside any loop then active scripts
unwind until the outermost script for a procedureisreached or all scriptsin progress have
been unwound. At this point Tcl turnsthe break or continue exceptioninto an error with an
appropriate message.

All exceptions are accompanied by a string value. In the case of an error, the string is
the error message. In the case of r et ur n, the string is the return value for the procedure
or script. Inthe case of br eak and cont i nue the string is always empty.

The cat ch command actually catches all exceptions, not just errors. The return
value from cat ch indicateswhat kind of exception occurred and the variable specified in
cat ch’ssecond argument is set to hold the string associated with the exception (see Table
9.2). For example:

catch {return "all done"} string
g 2

set string
O all done

Whereas cat ch provides a general mechanism for catching exception of all types,

r et ur n provides a general mechanism for generating exceptions of all types. If itsfirst
argument consists of the keyword - code, asin

DRAFT (8/12/93): Distribution Restricted

82

Errors and Exceptions

Return value

from cat ch Description Caught by
0 Normal return. String gives refurn Not applicable
value.
1 Error. String gives message describ- | Cat ch
ing the problem.
2 Ther et ur n command was Cat ch, sour ce, procedures

invoked. String gives return value
for procedure or sour ce com-

mand.
3 Thebr eak command wasinvoked. | Cat ch, for,foreach,while,
String is empty. procedures
4 Thecont i nue command was Catch,for,foreach,while,
invoked. String is empty. procedures
anything else | Defined by user or application. Cat ch

Table 9.2. A summary of Tcl exceptions. Thefirst column indicates the value returned by cat ch
in each instance. The second column describes when the exception occurs and the meaning of the
string associated with the exception. The last column lists the commands that catch exceptions of
that type (“procedures’ means that the exception is caught by a Tcl procedure when its entire body
has been aborted). The top row refers to normal returns where there is no exception.

return -code return 42

then its second argument is the name of an exception (r et ur n in this case) and the third
argument is the string associated with the exception. The enclosing procedure will return
immediately, but instead of a normal return it will return with the exception described by
ther et ur n command's arguments. |n the example above the procedure will generate a
return exception, which will then cause the calling procedure to return as well.

In Section 8.5 you saw how a new looping command do could be implemented as a
Tcl procedure using upvar and upl evel . However, the example in Section 8.5 did not
properly handle exceptions within the loop body. Here is anew implementation of do that
usescat ch andr et ur n to deal with exceptions properly:

DRAFT (8/12/93): Distribution Restricted

9.4 Exceptions in general 83

proc do {varNane first |ast body} {

gl obal errorlnfo errorCode

upvar $var Nanme v

for {set v $first} {$v <= $last} {incr v} {

switch [catch {uplevel $body} string] {
1 {return -code error -errorinfo $errorinfo \
-error Code $errorcode $string}

2 {return -code return $string}
3 return

}
}

This new implemenation evaluates the loop body inside acat ch command and then
checks to see how the body terminates. If no exception occurs (return value O from

cat ch) or if the exception is a continue (return value 4) then do just goes on to the next
iteration. If an error or return occurs (return value 1 or 2 from cat ch) then do usesthe
r et ur n command to reflect the exception upward to the caller. If abreak exception
occurs (return value 3 from cat ch) then do returnsto its caller normally, ending the
loop.

When do reflects an error upwardsit usesthe- er r or i nf o optiontor et ur n to
make sure that a proper stack trace is available after the error. If that option were omitted
then a fresh stack trace would be generated starting with do’s error return; the stack trace
would not indicate wherein body the error occurred. The context within body is avail-
ableintheerror | nf o variable at thetime cat ch returns, and the- er r or i nf o
option causes this value to be used as the initial contents of the stack trace when do
returns an error. As additional unwinding occurs moreinformation gets added to the initial
value, so that the final stack trace includes both the context within body and the context
of thecall todo. The- er r or code option servesasimilar purposefor theer r or Code
variable, retaining the er r or Code vaue from the original error astheer r or Code
value when do propagates the error. Without the - er r or code option theer r or Code
variable will aways end up with the value NONE.

DRAFT (8/12/93): Distribution Restricted

84

Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

Chapter 10
String Manipulation

10.1

This chapter describegIs facilities for manipulating strings. The string manipulation
commands provide pattern matching in twdetént forms, one that mimics the rules used

by shells for file name expansion and another that uses regular expressions as gatterns. T
also has commands for formatted input and output in a style similar to the C procedures
scanf andpri nt f . Finally, there are several utility commands with functions such as
computing the length of a string, extracting characters from a string, and case conversion.
Tables10.1 and 10.2 summarize tloe commands for string processing.

Glob-style pattern matching

The simplest of @I's two forms of pattern matching is called “glob” style. It is named
after the mechanism used in theh shell for file name expansion, which is called “glob-
bing”. Glob-style matching is easier to learn and use than the regular expressions
described in the next two sections, but it only works well for simple cases. For more com-
plex pattern matching you will probably need to use regular expressions.
The commandt ri ng nat ch implements glob-style pattern matching. For exam-

ple, the following script extracts all of the elements of a list that begin With™

set new {}

foreach el $list {

if [string match Tcl* $el] {
| append new S$el

85

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

86

String Manipulation

format format String ?val ue val ue ..?
Returns aresult equal to f or nmat St ri ng except that theval ue
arguments have been substituted in place of %sequencesin
format String.

regexp ?-indices??nocase? ?--? exp string ?matchVar? \
?subVar subvar ..?
Determines whether the regular expression exp matches part or al of
st ring andreturns 1 if it does, O if it doesn't. If thereis amatch,
information about matching range(s) is placed in the variables named by
mat chVar andthesubVar s, if they are specified.

regsub ?all? ?-nocase? ?-? exp string subSpec var Nane
Matchesexp against st ri ng asfor r egexp and returns 1 if thereisa
match, 0 if thereisnone. Also copiesst ri ng to the variable named by
var Nane, making substitutions for the matching portion(s) as specified by
subSpec.

scan string format varName ?var Nane var Nane ..?
Parsesfieldsfrom st r i ng as specified by f or mat and places the values
that match %sequences into variables named by the var Nane arguments.

string conpare stringl string2
Returns- 1,0, or 1 if st ri ngl islexicographically lessthan, equd to, or
greater thanst ri ng2.

string first stringl string2
Returnstheindex in st r i ng2 of the first character in the leftmost
substring that exactly matchesthe charactersinst ri ngl, or - 1 if thereis
no such match.

string index string charl ndex
Returnsthe char | ndex’th character of st ri ng, or an empty string if
there is no such character. Thefirst character in st ri ng hasindex 0.

string last stringl string2
Returnstheindex inst ri ng2 of the first character in the rightmost
substring of st ri ng2 that exactly matchesst ri ngl. If thereisno
matching substring then - 1 isreturned.

string length string
Returns the number of charactersinst ri ng.

string match pattern string
Returns 1 if pat t er n matches st r i ng using glob-style matching rules
(*,?,[]1,and \)andO if it doesn't.

string range string first |ast
Returns the substring of st r i ng that lies between the indices given by
first andl ast, inclusive. Anindex of O refersto the first character in
the string, and | ast may be end to refer to the last character of the string.

Table 10.1. A summary of the Tcl commands for string manipulation (continued in Table 10.2).

DRAFT (8/12/93): Distribution Restricted

10.1 Glob-style pattern matching 87

string tol ower string
Returnsavalue identical to st ri ng except that all upper case characters
have been converted to lower case.
string toupper string
Returns avalueidentical to st ri ng except that all lower case characters
have been converted to upper case.
string trimstring ?chars?
Returnsavalue identical tost ri ng except that any leading or trailing
charactersthat appear inchar s are removed. Char s defaults to the white
space characters (space, tab, newline, and carriage return).
string trinmeft string ?chars?
Sameasstring tri mexceptthat only leading characters are removed.
string trinright string ?chars?
Sameasstring tri mexceptthat only trailing characters are removed.

Table 10.2. A summary of the Tcl commands for string manipulation, cont’ d.

The st ri ng command is actually about a dozen string-manipulation commands rolled
into one. If the first argument is mat ch then the command performs glob-style pattern
matching and there must be two additional arguments, a pattern and a string. The com-
mand returns 1 if the pattern matches the string, O if it doesn’t. For the pattern to match
the string, each character of the pattern must be the same as the corresponding character of
the string, except that afew pattern characters are interpreted specially. For example, a*
in the pattern matches a substring of any length, so “Tcl * " matches any string whose first
three charactersare“Tcl ”. Hereisalist of al the specia characters supported in glob-

style matching:
* Matches any sequence of zero or more characters.
? Matches any single character.

[chars] Matchesany single character inchar s. If char s containsa
sequence of the form a- b then any character between a and b,
inclusive, will match.

\ X Matches the single character x. This provides away to avoid special
interpretation for any of the characters* ?[]\ in the pattern.
Many simple things can be done easily with glob-style patterns. For example,
“*. [ch] " matchesal stringsthat end with either “. ¢” or “. h”. However, many interest-
ing forms of pattern matching cannot be expressed at all with glob-style patterns. For
example, thereis no way to use a glob-style pattern to test whether a string consists
entirely of digits: the pattern “[0- 9] ” tests for asingle digit, but there is no way to spec-
ify that there may be more than one digit.

DRAFT (8/12/93): Distribution Restricted

88

String Manipulation

10.2

Character(s) Meaning
. Matches any single character.
A Matches the null string at the start of the input string.
$ Matches the null string at the end of the input string.
\ X Matches the character x.
[chars] Matches any single character from char s. If thefirst character of

char s is” then it matches any single character not in the remain-
der of char s. A sequence of theforma- b inchar s istreated as
shorthand for al of the ASCII characters between a and b, inclu-
sive. If thefirst character inchar s (possibly following a”) is]
then it istreated literally (as part of char s instead of atermina-
tor). If a- appearsfirstor lastinchar s then it istreated literaly.

(regexp) Matches anything that matches the regular expressionr egexp.
Used for grouping and for identifying pieces of the matching sub-
string.

* Matches a sequence of 0 or more matches of the preceding atom.

+ Matches a sequence of 1 or more matches of the preceding atom.

? Matches either anull string or a match of the preceding atom.

regexpl| regexp2 | Matches anything that matches either r egexpl orr egexp2.

Table 10.3. The special characters permitted in regular expression patterns.

Pattern matching with regular expressions

Tcl’s second form of pattern matching uses regular expressions like those for the egr ep
program. Regular expressions are more complex than glob-style patterns but more power-
ful. Tcl'sregular expressions are based on Henry Spencer’s publicly available implemen-
tation, and parts of the description below are copied from Spencer’s documentation.

A regular expression pattern can have several layers of structure. The basic building
blocks are called atoms, and the simplest form of regular expression consists of one or
more atoms. For aregular expression to match an input string, there must be a substring of
the input where each of the regular expression’s atoms (or other components, asyou’ll see
below) matches the corresponding part of the substring. In most cases atoms are single
characters, each of which matches itself. Thus the regular expression abc matches any
string containing abc, such asabcdef or xabcy.

A number of characters have special meaningsin regular expressions; they are sum-
marized in Table 10.3. The characters” and $ are atoms that match the beginning and end
of the input string respectively; thus”abc matches any string that startswith abc, abc$
matches any string that endsin abc, and*abc$ matchesabc and nothing else. The atom

DRAFT (8/12/93): Distribution Restricted

10.2 Pattern matching with regular expressions 89

Note:

“. " matches any single character, and the atom\ x, where x isany single character,
matches x. For example, the regular expression “. \ $” matches any string that contains a
dollar-sign, aslong as the dollar-sign isn’t the first character.

Besides the atoms already described, there are two other forms for atoms in regular
expressions. Thefirst form consists of any regular expression enclosed in parentheses,
suchas“(a. b) ". Parentheses are used for grouping. They allow operatorssuch as* tobe
applied to entire regular expressions aswell asatoms. They are also used to identify pieces
of the matching substring for special processing. Both of these uses are described in more
detail below.

Thefinal form for an atom isarange, which is acollection of characters between
square brackets. A range matches any single character that is one of the ones between the
brackets. Furthermore, if there is a sequence of the form a- b among the characters, then
all of the ASCII characters between a and b are treated as acceptable. Thus the regular
expression [0- 9a- f A- F] matches any string that contains a hexadecimal digit. If the
character after the[isa” then the sense of the range is reversed: it only matches charac-
tersnot among those specified between the” and the] .

Thethree operators* , +, and ? may follow an atom to specify repetition. If an atomis
followed by * then it matches a sequence of zero or more matches of that atom. If an atom
isfollowed by + then it matches a sequence of one or more matches of the atom. If an
atomisfollowed by ? then it matches either an empty string or a match of the atom. For
example, “*(0x) ?[0- 9a- f A- F] +$” matches strings that are proper hexadecimal
numbers, i.e. those consisting of an optional Ox followed by one or more hexadecimal
digits.

Finally, regular expressions may be joined together with the | operator. The resulting
regular expression matches anything that matches either of the regular expresssions that
surround the | . For example, the following pattern matches any string that is either a
hexadecimal number or adecimal number:

A((0x)?[0-9a-fA-F] +| [0-9]+) $
Note that the information between parentheses may be any regular expression, including
additional regular expressions in parentheses, so it is possible to build up quite complex
structures.

Ther egexp command invokes regular expression matching. In its simplest form it
takes two arguments: the regular expression pattern and an input string. It returns0 or 1 to
indicate whether or not the pattern matched the input string:

regexp {"[0-9]+$} 510
o1

regexp {~[0-9]+$} -510
o o

The pattern must be enclosed in braces so that the characters $, [, and] are passed
through to the r egexp command instead of triggering variable and command

DRAFT (8/12/93): Distribution Restricted

90

String Manipulation

10.3

substitution. In almost always a good idea to enclose regular expression patternsin
braces.

If r egexp isinvoked with additional arguments after the input string then each addi-
tional argument istreated as the name of avariable. Thefirst variable isfilled in with the
substring that matched the entire regular expression. The second variableisfilled in with
the portion of the substring that matched the leftmost parenthesized subexpression within
the pattern; the third variable isfilled in with the match for the next parenthesized subex-
pression, and so on. If there are more variable names than parenthesized subexpressions
then the extra variables are set to empty strings. For example, after executing the com-
mand

regexp {([0-9]+) *([a-z]+)} "Walk 10 knt a b c
variablea will havethevalue“10 knt, b will have the value 10, and ¢ will have the
value km This ability to extract portions of the matching substring allowsr egexp to be
used for parsing.

It is also possible to specify two extra switchesto r egexp before the regular expres-
sion argument. A - nocase switch specifies that a phabetic atoms should match either
upper-case or lower-case |etters. For example:

regexp {[a-z]} A
o o
regexp -nocase {[a-z]} A
o1
The- i ndi ces switch specifies that the additional variables should not be filled in with
the values of matching substrings. Instead, each should be filled in with alist giving the
first and last indices of the substring’s range within the input string. After the command
regexp -indices {([0-9]+) *([a-z]+)} "walk 10 knt \
abec
variable a will havethevalue“5 9”, b will havethevaue“5 6", and ¢ will havethe
value“8 9”.

Using regular expressions for substitutions

Regular expressions can also be used to perform substitutions using ther egsub com-
mand. Consider the following example:
regsub there "They live there lives" their x

o1
Thefirst argument to r egsub isaregular expression pattern and the second argument is
aninput string, just asfor r egexp. And, liker egexp, r egsub returns 1 if the pattern
matches the string, O if it doesn’'t. However, r egsub does more than just check for a
match: it creates a new string by substituting a replacement value for the matching sub-

DRAFT (8/12/93): Distribution Restricted

10.4 Generating strings with format 91

Note:

10.4

string. The replacement valueis contained in the third argument to r egsub, and the new
string is stored in the variable named by the final argument to r egsub. Thus, after the
above command completesx will havethevalue“They |ive their |ives”. Ifthe
pattern had not matched the string then O would have been returned and x would have the
value“They live there |lives”.

Two special switches may appear as argumentsto r egsub before the regular expres-
sion. Thefirstis- nocase, which causes case differences between the pattern and the
string to be ignored just asfor r egexp. The second possible switchis- al | . Normally
r egsub makes only a single substitution, for the first match found in the input string.
However, if - al | isspecified thenr egsub continues searching for additional matches
and makes substitutions for all of the matches found. For example, after the command

regsub -all a ababa zz x
x will havethevaluezzbzzbzz.If - al | had been omitted then x would have been set
tozzbaba.

In the examples above the replacement string isasimple literal value. However, if the
replacement string containsa“&” or “\ 0” then the“&” or “\ 0” isreplaced in the substitu-
tion with the substring that matched the regular expression. If a sequence of the form\ n
appears in the replacement string, where n is adecima number, then the substring that
matched the n-th parenthesized subexpression is substituted instead of the\ n. For exam-
ple, the command

regsub -all alb axaab && x
doubles all of thea’sand b’sin the input string. In this caseit setsx to aaxaaaabb. Or,
the command

regsub -all (a+)(ba*) aabaabxab {z\2} x
replaces sequences of a’swith asingle z if they precede ab but don't also follow ab. In
thiscase x is set to zbaabxzb. Backslashes may be used in the replacement string to
alow “&", “\ 07, “\ n”, or backslash charactersto be substituted verbatim without any
special interpretation.
It's usually a good idea to enclose complex replacement strings in braces asin the

example above; otherwise the Tcl parser will process backslash sequences and the
replacement string received by r egsub may not contain backslashes that are needed.

Generating strings with format

Tcl’sf or mat command provides facilities like those of thespr i nt f procedure from
the ANSI C library. For example, consider the following command:

format "The square root of 10 is % 3f" [expr sqrt(10)]
O The square root of 10 is 3.162

DRAFT (8/12/93): Distribution Restricted

92

String Manipulation

Thefirst argument to f or mat isaformat string, which may contain any number of con-
version specifiers such as“% 3f ”. For each conversion specifier f or mat generates a
replacement string by reformatting the next argument according to the conversion speci-
fier. Theresult of thef or mat command consists of the format string with each conver-
sion specifier replaced by the corresponding replacement string. In the above example
“9% 3f " specifies that the next argument isto be formatted as areal number with three
digits after the decimal point. For mat supports almost all of the conversion specifiers
defined for ANSI Cspri nt f, suchas“%l” for adecimal integer, “%” for a hexadeci-
mal integer, and “%e” for real numbers in mantissa-exponent form.

Thef or mat command plays aless significant role in Tcl than pri nt f and
sprintf playinC. Many of theusesof pri ntf andspri ntf aresimply for conver-
sion from binary to string format or for string substitution. Binary-to-string conversion
isn’t needed in Tcl because values are already stored as strings, and substitution is already
available through the Tcl parser. For example, the command

set nmeg [format "% is %l years ol d" $nane $age]
can be written more simply as

set msg "$name is $age years ol d"
The % conversion specifier inthef or mat command could be written just aswell as%s;;
with %@ f or mat converts the value of age to a binary integer, then converts the integer
back to a string again.

For mat istypicaly usedin Tcl to reformat avalue to improve its appearance, or to
convert from one representation to another (e.g. from decimal to hexadecimal). Asan
example of reformatting, hereis athat script prints the first ten powers of ein atable:

puts "Nunmber Exponential"
for {set i 1} {i <= 10} {incr i} {

puts [format "9%d 942.3f" $i [expr exp($i)]]
}

This script generates the following output on standard output:

Nunmber Exponenti al
1 2.718
2 7.389
3 20. 085
4 54.598
5 148. 413
6 403. 429
7 1096. 630
8 2980. 960
9 8103. 080

10 22026. 500

The conversion specifier “%4d” causes the integersin thefirst column of the table to be
printed right-justifed in afield four digits wide, so that they line up under their column
header. The conversion specifier “%d.2. 3f ” causes each of the real values to be printed

DRAFT (8/12/93): Distribution Restricted

10.5 Parsing strings with scan 93

10.5

right-justified in afield 12 digits wide, so that the valuesline up; it also sets the precision
at 3 digitsto the right of the decimal point.

The second main use for format , changing the reprensentation of avalue, isillus-
trated by the script below, which prints a table showing the ASCII characters that corre-
spond to particular integer values:

puts "Integer ASCII"
for {set i 95} {$i <= 101} {incr i} {
puts [format "%4d %c" $i $i]
}
This script generates the following output on standard output:
Integer ASCII
95 _
96
97 a
98 b
99 c
100 d
101 e

Thevaueof i isused twicein the format command, once with %4dand once with %c
The %cspecifier takes an integer argument and generates a replacement string consisting
of the ASCII character whose represented by the integer.

Parsing strings with scan

Thescan command provides almost exactly the ssmefacilitiesasthesscanf procedure
from the ANSI C library. Scan isroughly the inverse of format . It starts with a format-
ted string, parses the string under the control of aformat string, extracts fields correspond-
ing to %conversion specifiersin the format string, and places the extracted valuesin Tcl
variables. For example, after the following command is executed variable a will have the
value 16 and variable b will have thevalue 24.2 :

scan "16 units, 24.2% margin" "%d units, %f" a b
o 2

Thefirst argument to scan isthe string to parse, the second isaformat string that controls
the parsing, and any additional arguments are names of variables to fill in with converted
values. The return value of 2 indicates that two conversions were completed successfully.

Scan operates by scanning the string and the format together. Each character in the
format must match the corresponding character in the string, except for blanks and tabs,
which are ignored, and %characters. When a %is encountered in the format, it indicates
the start of a conversion specifier: scan converts the next input characters according to
the conversion specifier and stores the result in the variable given by the next argument to

DRAFT (8/12/93): Distribution Restricted

94

String Manipulation

scan. White space in the string is skipped except in the case of afew conversion specifi-
erssuchas%.

One common use for scan isfor simple string parsing, asin the example above.
Another common useisfor converting ASCII charactersto their integer values, which is
done with the % specifier. The procedure bel ow uses this feature to return the character
that follows a given character in lexicographic ordering:

proc next c¢ {
scan $c %
format % [expr $i+1]

}

next a
O b
next 9
O
The scan command converts the value of the ¢ argument from an ASCII character to the
integer used to represent that character, then the integer isincremented and converted back
to an ASCII character again with thef or mat command.

10.6 Extracting characters: string index and string range
The remaining string manipulation commands are all implemented as options of the
st ri ng command. For example, st ri ng i ndex extracts a character from a string:
string index "Sanple string" 3
o p
The argument after i ndex isastring and the last argument gives the index of the desired
character in the string. An index of O selects the first character.
Thestring range commandissimilartostri ng i ndex except that it takes
two indices and returns all the characters from the first index to the second, inclusive:
string range "Sanple string" 3 7
O ples
The second index may have the value end to select al the characters up to the end of the
string:
string range "Sanple string" 3 end
O ple string
10.7 Searching and comparison

Thecommandstring first takestwo additional string arguments asin the following
example:

DRAFT (8/12/93): Distribution Restricted

10.8 Length, case conversion, and trimming 95

10.8

string first th "There is the tub where | bathed today"
o 3
It searches the second string to seeif thereis asubstring that isidentical to the first string.
If sothenit returnstheindex of thefirst character in the leftmost matching substring; if not
thenit returns- 1. Thecommand st ri ng | ast issimilar except it returns the starting
index of the rightmost matching substring:
string last th "There is the tub where | bathed today"
o 21
Thecommand st ri ng conpar e takestwo additional arguments and compares
them in their entirety. It returns O if the strings areidentical, - 1 if thefirst string sorts
before the second, and 1 if thefirst string is after the second in sorting order:
string conpare M chigan M nnesota
o -1
string conpare M chigan M chi gan
o o

Length, case conversion, and trimming

Thestring | engt h command counts the number of charactersin astring and returns
that number:
string length "sanmple string"
0o 13
Thestring toupper command convertsal lower-case charactersin a string to
upper case, andthestri ng t ol ower command converts all upper-case charactersin
its argument to lower-case:
string toupper "Watch out!"
0 WATCH aUT!
string tolower "15 Charing Cross Road"
0 15 charing cross road
Thest ri ng command provides three optionsfor trimming: tri mtrim eft, and
trinri ght . Each option takestwo additional arguments: a string to trim and an optional
set of trim characters. Thest ri ng t ri mcommand removes al instances of the trim
characters from both the beginning and end of its argument string, returning the trimmed
string as resullt:
string trimaaxxxbab abc
O xxx
Thetrim eft andtri nri ght optionswork in the same way except that they only
remove the trim characters from the beginning or end of the string, respectively. The trim

DRAFT (8/12/93): Distribution Restricted

96

String Manipulation

commands are most commonly used to remove excess white space; if no trim characters
are specified then they default to the white space characters (space, tab, newline, and car-
riage return).

DRAFT (8/12/93): Distribution Restricted

Chapter 11
Accessing Files

Note:

11.1

This chapter describe€ls commands for dealing with files. The commands allow you to
read and write files sequentially or in a random-access fashion. They also allow you to
retrieve information kept by the system about files, such as the time of last access. Lastly
they can be used to manipulate file names; for example, you can remove the extension
from a file name or find the names of all files that match a particular patterral$ee T

11.1 for a summary of the file-related commands.

The commands described in this chapter anly available on systems that support the
kernel calls defined in the POSIX stariasuch as most UNIX workstations. If yoa ar

using El on another system, such as a Macintosh or a PC, then the file commands may not
be pesent and thermay be other commands thabyide similar functionality for your
system.

File names

File names are specified tolTising the normal UNIX syntax. For example, the file name
x/ 'yl z refers to a file namez that is located in a directory namgdwhich in turn is
located in a directory named which must be in the current working directorhe file
name/ t op refers to a filé op in the root directoryYou can also use tilde notation to
specify a file name relative to a particular isé&ome directoryFor example, the name
~oust er/ mbox refers to a file namatbox in the home directory of useust er, and

~/ mbox refers to a file namewbox in the home directory of the user running tice T
script. These conventions (and the availability of tilde notation in particular) apply to all
Tcl commands that take file names agiarents.

97

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

Accessing Files

cd 2di r Nane?
Changes the current working directory to di r Narnre, or to the home
directory (as given by the HOVE environment variable) if di r Name isn't
given. Returns an empty string.

close ileld?
Closesthefilegivenby f i | el d. Returns an empty string.

eof fileld
Returns 1 if an end-of-file condition has occurred onf i | el d, O otherwise.

file option name ?arg arg ..?
Performs one of several operations on the filename given by nare or on
thefilethat it refersto, depending on opt i on. See Table 11.3 for details.

flush fileld
Writes out any buffered output that has been generated for f i | el d.
Returns an empty string.

gets fileld?arName?
Reads the next linefromf i | el d and discards its terminating newline. If
var Name is specified, places the linein that variable and returns a count of
charactersintheline (or - 1 for end of file). If var Name isn't specified,
returns line as result (or an empty string for end of file).

gl ob ?noconpl ain? ?--? pattern ?pattern..?
Returns alist of the names of all files that match any of thepat t ern
arguments (special characters?,*,[],{},and\). If -noconpl ai n
isn't specified then an error occursiif the return list would be empty.

open nanme 7access?
Opensfile nane in the mode given by access. Accessmay ber,r+,w,
W+, a, or a+ or alist of flags such as RDONLY; it defaultstor . Returns a
fileidentifier for usein other commands likeget s and cl ose. If thefirst
character of nanme is“| " then acommand pipelineisinvoked instead of
opening afile (see Section 12.2 for more information).

puts ?-nonewl i ne? Xileld? string
Writesstringtofil el d, appending a newline character unless
-nonew i ne isspecified. Fi | el d defaultsto st dout . Returnsan
empty string.

pwd
Returns the full path name of the current working directory.

Table 11.1. A summary of the Tcl commands for manipulating files (continued in Table 11.2).

DRAFT (8/12/93): Distribution Restricted

11.2 Basic file 1/0 99

11.2

read ?-nonewline? fileld
Reads and returns al of the bytesremaining infi | el d. If - nonew i ne
is specified then the final newline, if any, is dropped.

read fileld nunBytes
Reads and returns the next nunByt es bytesfromfi | el d (or up to the
end of thefile, if fewer than nunByt es bytes are left).

seek fileld offset ?origin?
Positionf i | el d sothat the next access starts at of f set bytesfrom
origin.Oiginmaybestart,current,orend, and defaultsto
st art . Returns an empty string.

tell fileld

Returns the current access positionfor f i | el d.

Table 11.2. A summary of the Tcl commands for manipulating files, cont’d.

Basic file 1/0

The Tcl commands for file I/O are similar to the procedures in the C standard 1/0 library,
both in their names and in their behavior. Hereisascript called t gr ep that illustrates
most of the basic features of file 1/0:
#!/usr/local /bin/tclsh
if {$argc !'= 2} {
error "Usage: tgrep pattern fil eNane"

set f [open [lindex $argv 1] r]
set pat [lindex $argv 0]
while {[gets $f line] >= 0} {
if [regexp $pat $line] {
puts stdout $line
}

cl ose $f
This script behaves much likethe UNIX gr ep program: you can invokeit from your shell
with two arguments, aregular expression pattern and afile name, and it will print out al of
the linesin the file that match the pattern.

When't cl sh processes evaluates the script it makes the command-line arguments
available asalist in variable ar gv, with the length of that list in variable ar gc. After
making sure that it received enough arguments, the script invokes the open command on
the file to search, which isthe second argument. Open takes two arguments, the name of a
file and an access mode. The access mode provides information such as whether you'll be

DRAFT (8/12/93): Distribution Restricted

100

Accessing Files

Note:

reading the file or writing it, and whether you want to append to the file or access it from
the beginning. The access mode may have one of the following values:
r Open for reading only. The file must already exist. Thisisthe default if
the access mode isn’t specified.
r+ Open for reading and writing; the file must already exist.
W Open for writing only. Truncate thefileif it already exists, otherwise
create a new empty file.

WH Open for reading and writing. Truncate the file if it already exists, oth-
erwise create a new empty file.

a Open for writing only and set theinitial access position to the end of the
file. If the file doesn’t exist then create a new empty file.

a+ Open the file for reading and writing and set the initial access position
to the end of thefile. If the file doesn’t exist then create a new empty
file.

The access mode may &l so be specified asalist of POSIX flags like RDONLY, CREAT, and
TRUNC. See the reference documentation for more information about these flags.

The open command returns astring such asf i | e3 that identifies the open file. This
file identifier is used when invoking other commands to manipulate the open file, such as
get s, put s,and cl ose. Normally you will save thefile identifier in avariable when
you open afile and then use that variable to refer to the open file. You should not expect
the identifiers returned by open to have any particular format.

Threefileidentifiers have well-defined names and are always available to you, even if
you haven't explicitly opened any files. These are st di n, st dout , and st der r ; they
refer to the standard input, output, and error channels for the process in which the Tcl
script is executing.

After opening the file to search, thet gr ep script reads the file oneline at atime with
theget s command. Get s normally takestwo arguments: afileidentifier and the name of
avariable. It reads the next line from the open file, discards the terminating newline char-
acter, storesthelinein the named variable, and returns a count of the number of characters
stored into the variable. If the end of thefileis reached before reading any characters then
get s stores an empty string in the variable and returns - 1.

Tcl also provides a second form of get s where the line is returned as the result of the
command, and a command r ead for non-line-oriented input.

For each linein thefilethet gr ep script matches the line against the pattern and
printsit using put s if it matches. The put s command takes two arguments, which are a
fileidentifier and a string to print. Put s adds a newline character to the string and outputs
thelineonthe givenfile. The script usesst dout asthefileidentifier sothelineis printed
on standard output.

Whent gr ep reachesthe end of thefileget s will return - 1, which endsthewhi | e
loop. The script then closes the file with the cl ose command; this releases the resources
associated with the open file. In most systems there is alimit on how many files may be
open at onetimein an application, so it isimportant to close files as soon as you are fin-

DRAFT (8/12/93): Distribution Restricted

11.3 Output buffering 101

11.3

ished reading or writing them. In this example the close is unnecessary, since the file will
be closed automatically when the application exits.

Output buffering

11.4

The put s command uses the buffering scheme of the C standard 1/0 library. This means
that information passed to put s may not appear immediately in the target file. In many
cases (particularly if thefileisn't aterminal device) output will be saved in the applica
tion’s memory until alarge amount of data has accumulated for the file, at which point all
of the datawill be written out in asingle operation. If you need for datato appear in afile
immediately then you should invoke thef | ush command:

flush $f

Thef | ush command takes afileidentifier asits argument and forces any buffered output
datafor that file to be written to the file. FI ush doesn't return until the data has been writ-
ten. Buffered datais also flushed when afileis closed.

Random access to files

File 1/O is sequential by default: each get s or r ead command returns the next bytes
after the previous get s or r ead command, and each put s command writes its data
immediately following the data written by the previous put s command. However, you
canusetheseek,t el | ,and eof commandsto access files non-sequentially.

Each open file has an access position, which is the location in the file where the next
read or write will occur. When afileis opened the access position is set to the beginning or
end of thefile, depending on the access mode you specified to open. After each read or
write operation the access position increments by the number of bytes transferred. The
seek command may be used to change the current access position. In its simplest form
seek takestwo arguments, which are afileidentifier and an integer offset within thefile.
For example, the command

seek $f 2000
changes the access position for the file so that the next read or write will start at byte num-
ber 2000 in thefile.

Seek can also take athird argument that specifies an origin for the offset. The third
argument must be either st art, cur rent , or end. St art produces the same effect as
if the argument is omitted: the offset is measured relative to the start of thefile. Cur r ent
means that the offset is measured relative to the file's current access position, and end
means that the offset is measured relative to the end of the file. For example, the following
command sets the access position to 100 bytes before the end of the file:

seek $f -100 end

DRAFT (8/12/93): Distribution Restricted

102

Accessing Files

Note:

11.5

If theoriginiscur r ent or end then the offset may be either positive or negative; for
st art the offset must be positive.
It is possible to seek past the current end of the file, in which case the file may contain a

hole. Check the documentation for your operating system for more information on what
this means.

Thet el I command returns the current access position for a particular file identifier:
tell $f
0 186
Thisallows you to record a position and return to that position later on.

The eof command takes afile identifier as argument and returns O or 1 to indicate
whether the most recent get s or r ead command for the file attempted to read past the
end of thefile:

eof $f
o o

The current working directory

11.6

Tcl provides two commands that help to manage the current working directory: pwd and
cd. Pwd takes no arguments and returns the full path name of the current working direc-
tory. Cd takes asingle argument and changes the current working directory to the value of
that argument. If cd isinvoked with no arguments then it changes the current working
directory to the home directory of the user running the Tcl script (cd uses the value of the
HOVE environment variable as the path name of the home directory).

Manipulating file names: glob and file

Tcl has two commands for manipulating file names as opposed to file contents: gl ob and
file.Thegl ob command takes one or more patterns as arguments and returns alist of
al the file names that match the pattern(s):
glob *.c *.h
O main.c hash.c hash.h
A ob usesthe matching rules of thest ri ng mat ch command (see Section 10.1). In
the above example gl ob returns the names of al filesin the current directory that end in
.cor. h.d ob asoalows patterns to contain comma-separated lists of alternatives
between braces, asin the following example:
gl ob {{src, backup}/*.[ch]}
O src/main.c src/hash.c src/hash. h backup/ hash. c

DRAFT (8/12/93): Distribution Restricted

11.6 Manipulating file names: glob and file 103

Note:

A ob treatsthis pattern asif it were actually multiple patterns, one containing each of the
strings, asin the following example:

glob {src/*.[ch]} {backup/*.[ch]}
The extra braces around the patternsin these examples are needed to keep the brackets

inside the patterns from triggering command substitution. They are removed by the Tcl
parser in the usual fashion before invoking the command procedure for gl ob.

If agl ob pattern endsin a slash then it only matches the names of directories. For

example, the command
gl ob */
will return alist of all the subdirectories of the current directory.

If thelist of file namesto be returned by gl ob isempty then it normally generates an
error. However, if thefirst argument to gl ob, before any patterns, is- noconpl ai n then
gl ob will not generate an error if its result is an empty list.

The second command for manipulaing file namesisfi | e. Fi | e isageneral-pur-
pose command with many options that can be used both to manipulate file names and also
to retrieve information about files. See Tables 11.3 and 11.4 for a summary of the options
tofi | e. This section discusses the name-related options and Section 11.7 describes the
other options. The commands in this section operate purely on file names. They make no
system calls and do not check to seeif the names actually correspond to files.

Fi | e di r nane returns the name of the directory containing a particular file:

file dirname /al/bl/c
O /alb

file dirname main.c
oo,

Fi | e ext ensi on returns the extension for afile name (all the characters starting
with thelast . inthe name), or an empty string if the name contains no extension:

file extension src/main.c
o .c

Fi | e r oot name returns everything in afile name except the extension:

file rootnane src/main.c
O src/main

file rootname foo
0 foo

Lastly,fil e tail returnsthelast elementin afile's path name (i.e. the name of the
file within its directory):

file tail /alblc
0 c

file tail foo
0 foo

DRAFT (8/12/93): Distribution Restricted

104 Accessing Files

file atime name
Returns a decimal string giving the time at which filenane was last
accessed, measured in seconds from 12:00 A.M. on January 1, 1970.

file dirnane nane
Returns al of the charactersin name up to but not including the last /
character. Returns. if name contains no slashes, / if thelast slashin
nane isitsfirst character.

file executable nane
Returns 1 if nane is executable by the current user, O otherwise.

file exists name
Returns 1 if nane exists and the current user has search privilege for the
directoriesleading to it, O otherwise.

file extension nane
Returns all of the charactersin nane after and including the last dot.
Returns an empty string if there isno dot in narre or no dot after the last
dashinname.

file isdirectory nanme
Returns 1 if nane isadirectory, O otherwise.

file isfile name
Returns 1 if name isan ordinary file, O otherwise.

file I stat nanme arrayNanme
Invokesthel st at system call on nane and sets elements of
ar r ayNane to hold information returned by | st at . Thisoptionis
identical tothest at option unless namne refersto asymbolic link, in
which case this command returns information about the link instead of the
fileit pointsto.

file ntinme nanme
Returns adecimal string giving the time at which filenane waslast
modified, measured in seconds from 12:00 A.M. on January 1, 1970.

file owned name
Returns 1 if name is owned by the current user, O otherwise.

file readabl e nane
Returns 1 if nane isreadable by the current user, O otherwise.

file readlink name
Returns the value of the symbolic link given by nare (the name of thefile
it pointsto).

Table 11.3. A summary of the optionsfor thef i | e command (continued in Table 11.4).

DRAFT (8/12/93): Distribution Restricted

11.7 File information commands 105

11.7

file rootname nane
Returns all of the charactersin nane up to but not including the last .
character. Returns nane if it doesn’t contain any dots or if it doesn’t
contain any dots after the last dlash.

file size name
Returns a decimal string giving the size of filenane in bytes.

file stat nane arrayNane
Invokes st at system call on name and sets elements of ar r ayName to
hold information returned by st at . The following elements are set, each
asadecimal string: ati ne, cti me, dev, gi d, i no, node, nti ne,
nlink,size,anduid.

file tail nanme
Returns all of the charactersin nane after thelast/ character. Returns
nane if it contains no slashes.

file type nane
Returns a string giving the type of file nane. The return value will be one
of file,directory,character Speci al , bl ockSpeci al ,fifo,
I'i nk, orsocket.

file witable nanme

Returns 1 if name iswritable by the current user, O otherwise.

Table 11.4. A summary of the options for thef i | e command, cont’d.

File information commands

In addition to the options already discussed in Section 11.6 above, thef i | e command
provides many other options that can be used to retrieve information about files. Each of
these options except st at and | st at hastheform
file option nane

where opt i on specifies the information desired, such asexi st s orr eadabl e or
si ze, and nane isthe name of thefile. Table 11.3 summarizes all of the options for the
fil e command.

Theexi sts,isfile,isdirectory,andtype optionsreturninformation about
the nature of afile. Fi | e exi st s returns 1 if there exists afile by the given name and 0
if thereisno such file or the current user doesn’t have search permission for the directories
leadingtoit. Fi | e i sfilereturnsl if thefileisan ordinary disk fileand O if itis
something else, such asadirectory or devicefile. Fi | e i sdi rectory returns1 if the
fileisadirectory and O otherwise. Fi | e type returnsastringsuchasfil e, di rec-
tory, orsocket that identifiesthefile type.

DRAFT (8/12/93): Distribution Restricted

106

Accessing Files

Ther eadabl e, wri t abl e, and execut abl e optionsreturn 0 or 1 to indicate
whether the current user is permitted to carry out the indicated action on the file. The
owned option returns 1 if the current user isthefile's owner and O otherwise.

The si ze option returns adecimal string giving the size of thefilein bytes. Fi | e
nt i me returns the time when the file was last modified. The time valueis returned in the
standard POSIX form for times, namely an integer that counts the number of seconds
since 12:00 A.M. on January 1, 1970. Theat i me optionissimilar tont i nme except that
it returns the time when the file was last accessed.

The st at option provides a simple way to get many pieces of information about a
file at onetime. This can be significantly faster than invoking f i | e many timesto get the
pieces of information individually. Fi | e st at also provides additional information that
isn't accessible with any other file options. It takes two additional arguments, which are
the name of afile and the name of avariable, asin the following example:

file stat main.c info

In this case the name of thefileismai n. ¢ and the variable nameisi nf o. The variable
will be treated as an array and the following elements will be set, each as a decimal string:
atime Timeof last access.
ctime Timeof last status change.

dev Identifier for device containing file.
gid I dentifier for the file's group.
i no Serial number for the file within its device.

node Mode bits for file.

nime Timeof last modification.

nli nk Number of linksto file.

si ze Size of file, in bytes.

uid Identifier for the user that owns thefile.

Theat i me,nti nme,andsi ze elements have the same values as produced by the corre-
sponding f i | e options discussed above. For more information on the other elements,
refer to your system documentation for the st at system call; each of the dlementsis
taken directly from the corresponding field of the structure returned by st at .

Thel st at andr eadl i nk options are useful when dealing with symboalic links,
and they can only be used on systems that support symboliclinks. Fi | e | st at isiden-
ticaltofil e stat forordinary files, but when it is applied to asymbolic link it returns
information about the symbolic link itself, whereasf i | e st at will return information
about thefilethelink pointsto. Fi | e readl i nk returnsthe contents of asymboalic link,
i.e. the name of thefilethat it refersto; it may only be used on symbolic links. For al of
theother f i | e commands, if the name refers to a symbolic link then the command oper-
ates on the target of the link, not the link itself.

DRAFT (8/12/93): Distribution Restricted

11.8 Errors in system calls 107

11.8 Errors in system calls

Most of the commands described in this chapter invoke calls on the operating system, and
in many cases the system calls can return errors. This can happen, for example, if you
invokeopenorfil e stat onafilethat doesn't exist, or if an I/O error occurs in read-
ing afile. The Tcl commands detect these system call errors and in most cases the Tcl
commands will return errors themselves. The error message will identify the error that
occurred:
open bogus
O couldn't open "bogus": no such file or directory

When an error occursin a system call Tcl also setstheer r or Code variableto pro-
vide more precise information. You may find thisinformation useful as part of error recov-
ery so that, for example, you can determine exactly why the the file wasn't accessible
(Was there no such file? Was it protected to prevent access? ...). If asystem call error has
occurred then er r or Code will consist of alist with three elements:

set errorCode

O POSI X ENCENT {no such file or directory}
The first element is always POSI X to indicate that the error occurred in a POSIX system
call. The second element is the official name for the error (ENOCENT in the above exam-
ple). Refer to your system documentation or to the include fileer r no. h for acomplete
list of the error names for your system. These names adhere to the POSIX standard as
much as possible. The third element is the error message that corresponds to the error.
This string usually appearsin the error message returned by the Tcl command. Tcl usesthe
standard list of error messages provided by your system, if thereis one, and adheresto the
POSIX standard as much as possible.

DRAFT (8/12/93): Distribution Restricted

108 Accessing Files

DRAFT (8/12/93): Distribution Restricted

Chapter 12
Processes

12.1

Tcl provides several commands for dealing with processescan create new processes
with theexec command, or you can create new processesopiéim and then use file

I/O commands to communicate with thenouYtan access process identifiers with the

pi d command. ¥u can read and write environment variables usingivevariable and
you can terminate the current process withetkiet command. Like the file commands in
Chapter 1, these commands are only available on systems that support POSIX kernel
calls. Table 12.1 summarizes the commands related to process management.

Invoking subprocesses with exec

Theexec command creates one or more subprocesses and waits until they complete
before returning. For example,

exec rmmain.o
executes mas a subprocess, passes it tigeiaentmai n. o, and returns aftermcom-
pletes. The guments t@xec are similar to what you would type as a command line to a
shell program such &h orcsh. The first agument teexec is the name of a program to
execute and each additionajament forms one gument to that subprocess.

To execute a subprocesxec looks for an executable file with a name equal to
exec’s first agument. If the name containg ar starts with~ thenexec checks the sin-
gle file indicated by the name. Otherwiseec checks each of the directories in BATH
environment variable to see if the command name refers to an executable file in that direc-
tory. Exec uses the first executable that it finds.

109

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

110

Processes

exec ?-keepnew ine? ?--? arg 7arg ..?
Executes command pipeline specified by ar g's using one or more
subprocesses and returns the pipeling’s standard output or an empty string if
output is redirected (the trailing newline, if any, is dropped unless -
keepnew i ne is specified). /0 redirection may be specified with <, <<,
and > and several other forms and pipes may be specified with | . If the last
ar g is & then the pipeline is executed in background and the return valueis
alist of its processids.

exit ?code?
Terminates process, returning code to parent as exit status. Code must be
an integer. Code defaultsto 0.

open | comrand ?access?
Treats command as alist with the same structure as argumentsto exec
and creates subprocess(es) to execute command(s). Depending onaccess,
creates pipes for writing input to pipeline and reading output from it.

pid Xileld?
If fil el disomitted, returns the processidentifier for the current process.
Otherwise returns alist of all the process idsin the pipeline associated with

fileld (which must have been opened using |).

Table 12.1. A summary of Tcl commands for manipulating processes.

Exec collectsall of the information written to standard output by the subprocess and
returns that information asits result, asin the following example:

exec echo we tcl.h
O 618 2641 21825 tcl.h

If the last character of output is a newline then exec removes the newline. This behavior
may seem strange but it makes exec consistent with other Tcl commands,which don't
normally terminate the last line of the result; you can retain the newline by specifying
- keepnew i ne asthefirst argument to exec.

Exec supports1/O redirection in afashion similar to the UNIX shells. For example, if
one of the argumentsto exec is“>f 00” (or if thereisa“>" argument followed by a
“f 00” argument), then output from the processis placed in filef 0o instead of returning
to Tcl asexec’sresult. Inthis case exec’sresult will be an empty string. Exec aso sup-
ports several other forms of output redirection, such as >> to append to afile, >& to redi-
rect both standard output and standard error, and 2> to redirect standard error
independently from standard outpuit.

Standard input may be redirected using either < or <<. The < form causes input to be
taken from afile. In the << form the following argument is not afile name, but rather an

DRAFT (8/12/93): Distribution Restricted

12.1 Invoking subprocesses with exec 111

Note:

immediate value to be passed to the subprocess as its standard input. The following com-
mand uses << to write datato afile:

exec cat << "test data" > foo

Thestring “t est i nput ” ispassed to cat asits standard input; cat copiesthe string
to its standard ouput, which has been redirected to filef 0o. If no input redirection is spec-
ified then the subprocess inherits the standard input channel from the Tcl application.

You can aso invoke a pipeline of processes instead of asingle processusing | , asin
the following example:

exec grep #include tclint.h | w
O 8 25 212
The gr ep program extracts all the lines containing the string “#i ncl ude” from thefile
tcl I nt. h. Theselinesarethen piped to thewc program, which computes the number of
lines, words, and charactersin the gr ep output and prints this information on its standard
output. Thewc output is returned as the result of exec.

If the last argument to exec is & then the subprocess(es) will be executed in back-
ground. Exec will return immediately, without waiting for the subprocesses to complete.
Its return value will be alist containing the process identifiers for al of the processesin
the pipeline; standard output from the subprocesses will go to the standard output of Tcl
application unless redirected. No errors will be reported for abnormal exits or standard
error output, and standard error for the subprocesses will be directed to the standard error
channel of the Tcl application.

If asubprocessis suspended or exits abnormally (i.e., itiskilled or returns anon-zero
exit status), or if it generates output on its standard error channel and standard error was
not redirected, then exec returns an error. The error message will consist of the output
generated by the last subprocess (unless it was redirected with >), followed by an error
message for each process that exited abnormally, followed by the information generated
on standard error by the processes, if any. In addition, exec will set theer r or Code
variable to hold information about the last process that terminated abnormally, if any (see
the reference documentation for details).

Many UNIX programs are careless about the exit status that they return. If you invoke
such a programwith exec and it accidentally returns a non-zero status then the exec

command will generate a false error. To prevent these errors from aborting your scripts,
invoke exec insidea cat ch command.

Although exec’s features are similar to those of the UNIX shells there is one impor-
tant difference: exec does not perform any file name expansion. For example, suppose
you invoke the following command with the goal of removing al . o filesin the current
directory:

exec rm*.o
O rm *.o nonexistent

DRAFT (8/12/93): Distribution Restricted

112

Processes

12.2

Rmreceives“* . 0" asitsargument and exits with an error when it cannot find afile by this
name. If you want file name expansion to occur you can use the gl ob command to get it,
but not in the obvious way. For example, the following command will not work:

exec rm[glob *.0]

O rm a.o b.o nonexistent

Thisfails because thelist of file namesthat gl ob returnsis passed to r mas asingle argu-
ment. If, for example, there exist two . o files, a. 0 and b. o, then rm’s argument will be
“a. 0 b. 0"; sincethereis nofile by that name r mwill return an error. The solution to
this problem is the one described in Section 7.5: useeval to reparsethe gl ob output so
that it gets divided into multiple words. For example, the following command will do the
trick:

eval exec rm[glob *. o]
Inthiscaseeval concatenates its arguments to produce the string

exec rma.o b.o
which it then evaluates as a Tcl script. Thenamesa. o and b. o are passed to r mas sepa-
rate arguments and the files are deleted as expected.

I/0O to and from a command pipeline

Note:

You can aso create subprocesses using the open command; once you’' ve done this you
can then use commands like get s and put s to interact with the pipeline. Here are two
simple examples:

set f1 [open {|tbl | ditroff -ms} W

set f2 [open |prog r+}
If the first character of the “file name” passed to open isthe pipe symbol | then the argu-
ment isn’'t realy afilenameat all. Instead, it specifies acommand pipeline. The remainder
of the argument after the | istreated as alist whose elements have exactly the same mean-
ing as the arguments to the exec command. Open will create a pipeline of subprocesses
just asfor exec and it will return an identifier that you can useto transfer datato and from
the pipeline. In the first example the pipeline is opened for writing, so a pipeisused for
standard input to thet bl process and you can invoke put s to write data on that pipe; the
output fromt bl goestodi t r of f , and the output from di t r of f goesto the standard
output of the Tcl application. The second example opens a pipeline for both reading and
writing so separate pipes are created for pr og’s standard input and standard output. Com-
mands like put s can be used to write datato pr og and commandslike get s can be
used to read the output from pr og.
When writing data to a pipeline, don't forget that output is buffered: it probably will not

actually be sent to the child process until you invoke the f | ush command to force the
buffered data to be written.

DRAFT (8/12/93): Distribution Restricted

12.3 Process ids 113

12.3

When you close afile identifier that corresponds to a command pipeline, thecl ose
command flushes any buffered output to the pipeline, closes the pipes leading to and from
the pipeline, if any, and waits for all of the processes in the pipeline to exit. If any of the
processes exit abnormally then cl ose returns an error in the same way asexec.

Process ids

12.4

Tcl provides three ways that you can access process identifiers. First, if you invoke a pipe-
line in background using exec then exec returnsalist containing the process identifiers
for al of the subprocessesin the pipeline. You can use theseidentifers, for example, if you
wish to kill the processes. Second, you can invoke the pi d command with no arguments
and it will return the process identifier for the current process. Third, you can invoke pi d
with afileidentifier as argument, asin the following example:

set f [open {| tbl | ditroff -ms} W

pid $f

0 7189 7190

If there is a pipeline corresponding to the open file, as in the example, then the pi d com-
mand will return alist of identifiers for the processes in the pipeline.

Environment variables

12.5

Environment variables can be read and written using the standard Tcl variable mechanism.
The array variable env contains all of the environment variables as elements, with the
name of the element in env corresponding to the name of the environment variable. If you
modify the env array, the changes will be reflected in the process's environment variables
and the new values will also be passed to any child process created with exec or open.

Terminating the Tcl process with exit

If you invoketheexi t command then it will terminate the processin which the com-
mand was executed. Exi t takes an optional integer argument. If this argument is pro-
vided then it is used as the exit status to return to the parent process. 0 indicates a normal
exit and non-zero values correspond to abnormal exits; values other than 0 and 1 arerare.
If noargumentisgiventoexi t thenit exitswith astatusof 0. Sinceexi t terminatesthe
process, it doesn’t have any return value.

DRAFT (8/12/93): Distribution Restricted

114 Processes

DRAFT (8/12/93): Distribution Restricted

Chapter 13
Managing Tcl Internals

This chapter describes a collection of commands that allow you to query and manipulate
the internal state of theclinterpreterFor example, you can use these commands to see if
a variable exists, to find out what entries are defined in an sonapnitor all accesses to

a variable, to rename or delete a command, or to handle references to undefined com-
mands. @bles 13.1 and 13.2 summarize the commands.

13.1 Querying the elements of an array

Thear r ay command provides information about the elements currently defined for an
array variable. It provides this information in severdiedént ways, depending on the first
argument passed to it. The commaard ay si ze returns a decimal string indicating
how many elements are defined for a given array variable and the coranraang
names returns a list whose entries are the names of the elements of a given array variable:
set currency(France) franc
set "currency(Geat Britain)" pound

set currency(Gernmany) mark
array size currency

o 3
array nanes currency
O {Geat Britain} France Gernany
For each of these commands the fingliarent must be the name of an array variable. The
list returned byar r ay names does not have any particular order

115

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

116 Managing Tcl Internals

array anynore nanme searchld
Returns 1 if there are any more elements to processin searchsear chl d
of array nane, O if all elements have already been returned.
array donesearch nane searchld
Terminates search sear chl d of array nane and discard any state
associated with the search. Returns an empty string.
array names nane
Returns alist containing the names of al the elements of array nane.
array nextel ement name searchld
Returns the name of the next element in search sear chl d of array nane,
or an empty string if al elements have aready been returned in this search.
array size nane
Returns adecimal string giving the number of elementsin array nane.
array startsearch nane
Initializes a search through al of the elements of array name. Returns a
search identifier that may be passedtoar r ay next el enent,array
anynore,orarray donesearch.

aut o_nki ndex dir pattern
Scans all of thefilesin diretory di r whose names match pat t er n (using
the glob-stylerules of st ri ng nmat ch) and generates afilet cl | ndex
indi r that allows the files to be auto-loaded.

info option 7arg arg ..?
Returns information about the state of the Tcl interpreter. See Table 13.3.

renane ol d new
Renames command ol d to new, or deletesol d if newisan empty string.
Returns an empty string.

time script ?2count?
Executesscri pt count timesand returns a string giving the average
elapsed time per execution. Count defaultsto 1.

Table 13.1. A summary of commands for manipulating Tcl’sinternal state (continued in Table
13.2).

Thearray names command can be used in conjunction with f or each to iterate
through the elements of an array. For example, the code below deletes all elements of an
array with values that are 0 or empty:

foreach i [array nanes a] {
if {($a($i) =="") || ($a($i) == 0))} {
unset a($i)
}

DRAFT (8/12/93): Distribution Restricted

13.2 The info command 117

trace variabl e name ops conmand
Establishes a trace on variable nanme such that commrand isinvoked
whenever one of the operations given by ops is performd on nare. Qps
must consist of one or more of the charactersr , w; or u. Returns an empty
string.

trace vdel ete name ops conmand
If there exists atrace for variable nane that has the operations and
command given by ops and conmand, removes that trace so that its
command will not be executed anymore. Returns an empty string.

trace vinfo nanme
Returns a list with one element for each trace currently set on variable
namne. Each element is a sub-list with two elements, which aretheops and
conmand associated with that trace.

unknown cnd ?arg arg ..?
This command isinvoked by the Tcl interpreter whenever an unknown
command name is encountered. Crrd will be the unknown command name
and the ar g’swill be the fully-substituted arguments to the command. The
result returned by unknown will be returned as the result of the unknown
command.

Table 13.2. Commands for manipulating Tcl's internal state, cont’ d.

Note: Thear r ay command also provides a second way to search through the elements of an
array, using thest art sear ch, anynor e, next el enent , anddonesear ch
options. This approach is more general than thef or each approach given above, and in
some cases it is more efficient, but it is more verbose than the f or each approach and
isn't needed very often. See the reference documentation for details.

13.2 The info command

Thei nf o command provides information about the state of the interpreter. It has more
than a dozen options, which are summarized in Tables 13.3 and 13.4.

13.2.1 Information about variables
Severd of thei nf o options provide information about variables. | nf 0 exi st s returns
a0 or 1 valueindicating whether or not there exists a variable with a given name:

set x 24
info exists x

g1

DRAFT (8/12/93): Distribution Restricted

118

Managing Tcl Internals

info

args procName
Returns a list whose elements are the names of the arguments to procedure
pr ocNan®, in order.

body procNane
Returns the body of procedure pr ocNane.

info

cndcount
Returns a count of the total number of Tcl commands that have been
executed in thisinterpreter.

info

comrands ?pattern?
Returns alist of all the commands defined for thisinterpreter, including
built-in commands, application-defined commands, and procedures. If
pat t er n is specified then only the command names matching pat t er n
arereturned (st ri ng mat ch’srules are used for matching).

default procName argNanme var Nane
Checksto see if argument ar gNarre to procedure pr oc Nane has adefault
value. If so, stores the default value in variable var Name and returns 1.
Otherwise, returns O without modifying var Nane.

info

exi sts var Name
Returns 1 if there exists a variable named var Nane in the current context,
0 if no such variableis currently accessible.

info

gl obal s ?pattern?
Returns alist of all the global variables currently defined. If pat t er nis
specified, then only the global variable names matching pat t er n are
returned (st ri ng mat ch’srules are used for matching).

info | evel “nunber?
If nunber isn't specified, returns a number giving the current stack level
(O corresponds to top-level, 1 to thefirst level of procedure call, and so
on). If nunber is specified, returns alist whose elements are the name and
arguments for the procedure call at level nunber.

info library
Returns the full path name of the library directory in which standard Tcl
scripts are stored.

info |ocals ?pattern?

Returns alist of all the local variables defined for the current procedure, or
an empty string if no procedureis active. If pat t er n is specified then
only the local variable names matching pat t er n arereturned (st ri ng
mat ch’srules are used for matching).

Table 13.3. A summary of the options for thei nf o command (continued in Table 13.4).

DRAFT (8/12/93): Distribution Restricted

13.2 The info command 119

info procs 7pattern?
Returns alist of the names of all procedures currently defined. If pat t er n
is specified then only the procedure names matching pat t er n are
returned (st ri ng mat ch’srules are used for matching).

info script
If ascript fileis currently being evaluated then this command returns the
name of that file. Otherwise it returns an empty string.

info tclversion
Returns the version number for the Tcl interpreter in the form
maj or.m nor, wheremaj or and m nor are each decimal integers.
Incrementsinm nor correspond to bug fixes, new features, and
backwards-compatible changes. Maj or increments only when
incompatible changes occur.

info vars ?pattern?
Returns alist of all the names of all variables that are currently accessible.
If pat t er n is specified then only the variable names matching pat t er n
arereturned (st ri ng mat ch’srules are used for matching).

Table 13.4. A summary of the optionsfor thei nf o command, cont’ d.

unset x
info exists x

o o

Theoptionsvar s, gl obal s, and| ocal s return lists of variable names that meet
certain criteria. | nf o var s returns the names of all variables accessible at the current
level of procedurecall; i nf o gl obal s returnsthe names of all global variables, regard-
less of whether or not they are accessible; andi nf o | ocal s returns the names of local
variables, including arguments to the current procedure, if any, but not global variables. In
each of these commands an additional pattern argument may be supplied. If the patternis
supplied then only variable names matching that pattern (using the rulesof st ri ng
mat ch) will be returned.

For example, suppose that global variablesgl obal 1 and gl obal 2 have been
defined and that the following procedure is being executed:

proc test {argl arg2?2} {
gl obal gl obal 1

set locall 1
set local2 2

}

Then the following commands might be executed in the procedure:

DRAFT (8/12/93): Distribution Restricted

120

Managing Tcl Internals

13.2.2

info vars
0 globall argl arg2 local 2 |local 1
info gl obals
O global 2 globall
info | ocals
O argl arg2 local2 locall
info vars *al *
O globall local?2 locall

Information about procedures

Another group of i nf o options provides information about procedures. The command
i nf o procs returnsalist of all the Tcl proceduresthat are currently defined. Likei nf o
var s, it takes an optional pattern argument that restricts the names returned to those that
match agiven pattern. | nf o body,i nfo args,andi nfo def aul t returninforma-
tion about the definition of a procedure:

proc maybePrint {a b {c 24}} {

if {$a < $b}{
puts stdout "c is $c"

}
}
i nfo body maybePri nt
0
if {$a < $b} {
puts stdout "c is $c"
}
info args maybePrint
O abec
info default maybePrint a x
oo
info default maybePrint c x
01
set X
0 24

I nf o body returnsthe procedure’s body exactly asit was specified to the pr oc com-
mand. | nf o ar gs returnsalist of the procedure’s argument names, in the same order
they were specified to pr oc. | nf o def aul t returnsinformation about an argument’s
default value. It takes three arguments: the name of a procedure, the name of an argument
to that procedure, and the name of avariable. If the given argument has no default value
(e.g. ainthe above example), i nf o def aul t returnsO. If the argument has a default

DRAFT (8/12/93): Distribution Restricted

13.2 The info command 121

13.2.3

value (c inthe above example) theni nf o def aul t returns 1 and sets the variable to
hold the default value for the argument.

As an example of how you might use the commands from the previous paragraph,
hereisaTcl procedure that writes a Tcl script file. The script will contain Tcl codein the
form of pr oc commandsthat recreate all of the proceduresin the interpreter. The file can
then be sour ce’d in some other interpreter to duplicate the procedure state of the origi-
nal interpreter. The procedure takes a single argument, which is the name of the file to
write:

proc printProcs file {
set f [open $file W
foreach proc [info procs] {
set argList {}
foreach arg [info args $proc] {
if [info default $proc $arg default] {
| append argList [list $arg $defaul t]
} else {
| append argList $arg
}

}
puts $f [list proc $proc $argList \
[info body $proc]]

cl ose $f
}
| nf o provides one other option related to procedures: i nf o | evel . Ifi nfo
| evel isinvoked with no additional argumentsthen it returnsthe current procedure invo-
cation level: O if no procedureis currently active, 1 if the current procedure was called
fromtop-level,andsoon. If i nf o | evel isgiven an additional argument, the argument
indicates aprocedure level andi nf o | evel returnsalist whose elements are the name
and actual argumentsfor the procedure at that level. For example, the following procedure
prints out the current call stack, showing the name and arguments for each active proce-
dure:

proc printStack {} {

set level [info |evel]

for {set i 1} {$i < $level} {incr i} {
puts "Level $i: [info level $i]"

}

Information about commands

I nf o commands issimilartoi nf o pr ocs except that it returns information about all
existing commands, not just procedures. If invoked with no arguments, it returns alist of
the names of all commands; if an argument is provided, then it is a pattern in the sense of
string mat ch and only command names matching that pattern will be returned.

DRAFT (8/12/93): Distribution Restricted

122

Managing Tcl Internals

13.2.4

13.3

Thecommandi nf o cndcount returnsadecimal string indicating how many com-
mands have been executed in this Tcl interpreter. It may be useful during peformance tun-
ing to see how many Tcl commands are being executed to carry out various functions.

Thecommandi nf o scri pt indicateswhether or not ascript fileis currently being
processed. If so then the command returns the name of the innermost nested script file that
isactive. If thereisno active script filetheni nf o scri pt returnsan empty string. This
command is used for relatively obscure purposes such as disallowing command abbrevia-
tionsin script files.

Tclversion and library

I nfo tclversi on returnsthe version number for the Tcl interpreter in the form
maj or . m nor. Each of maj or and m nor isadecimal string. If anew release of Tcl
contains only backwards-compatible changes such as bug fixes and new features, then its
minor version number increments and the major version number stays the same. If anew
release contains changes that are not backwards-compatible, so that existing Tcl scripts or
C code that invokes Tcl’s library procedures will have to be modified, then the major ver-
sion number increments and the minor version number resets to 0.

Thecommandi nf o |i brary returnsthe full path name of the Tcl library direc-
tory. Thisdirectory is used to hold standard scripts used by Tcl, such asadefault definition
for the unknown procedure described in Section 13.6 below.

Timing command execution

Thet i me command is used to measure the performance of Tcl scripts. It takes two argu-
ments, a script and a repetition count:
time {set a xyz} 10000

O 92 microseconds per iteration
Ti me will execute the given script the number of times given by the repetition count,
dividethetotal elapsed time by the repetition count, and print out amessage like the above
one giving the average number of microseconds per iteration. The reason for the repetition
count is that the clock resolution on most workstations is many milliseconds. Thus any-
thing that takes less than tens or hundreds of milliseconds cannot be timed accurately. To
make accurate timing measurements, | suggest experimenting with the repetition count
until the total time for thet i me command is afew seconds.

DRAFT (8/12/93): Distribution Restricted

13.4 Tracing operations on variables 123

13.4 Tracing operations on variables

Thet r ace command allows you to monitor the usage of one or more Tcl variables. Such
monitoring is called tracing. If atrace has been established on a variable then a Tcl com-
mand will be invoked whenever the variableisread or written or unset. Traces can be used
for avariety of purposes:

* monitoring the variable's usage (e.g. by printing a message for each read or write oper-
ation)

* propagating changesin the variable to other parts of the system (e.g. to ensure that a
particular widget always displays the picture of a person named in a given variable)

* restricting usage of the variable by rejecting certain operations (e.g. generate an error
on any attempt to change the variable's value to anything other than a decimal string) or
by overriding certain operations (e.g. recreate the variable whenever it is unset).

Here isasimple example that causes a message to be printed when either of two vari-
ablesis modified:
trace variable color w pvar
trace variable a(length) w pvar
proc pvar {nane el enment op} ({
if {$element = ""} {
set name ${nane}($el ement)
}

upvar $name x
puts "Variable $name set to $x"

}
Thefirst t r ace command arranges for procedure pvar to beinvoked whenever variable
col or iswritten: var i abl e specifiesthat avariable traceis being created, col or
gives the name of the variable, w specifies a set of operationsto trace (any combination of
r for read, wfor write, and u for unset), and the last argument is a command to invoke.
The second trace command sets up atrace for element | engt h of array a.

Whenever col or or a(| engt h) ismodified, Tcl will invoke pvar with three
additional arguments, which are the variable's name, the variable's element name (if it is
an array element, or an empty string otherwise), and an argument indicating what opera-
tion was actually invoked (r for read, wfor write, or u for unset). For example, if the com-
mand “set col or purpl e” isexecuted, Tcl will evaluate the command
“pvar color {} purple” becauseof thetrace. If “set a(l ength) 108" is
invoked, the trace command “pvar a | engt h w’ will be evaluated.

Thepvar procedure doesthreethings. First, if the traced variableis an array element
then pvar generates a complete name for the variable by combining the array name and
the element name. Second, the procedure uses upvar to make the variable's value acces-
sible inside the procedure as local variable x. Finaly, it prints out the variable’'s name and
value on standard output. For the two accesses in the previous paragraph the following
messages will be printed:

DRAFT (8/12/93): Distribution Restricted

124

Managing Tcl Internals

Note:

Variabl e color set to purple
Variabl e a(length) set to 108

The example above set traces on individual variables. It's also possible to set atrace

on an entire array, as with the command

trace variable a w pvar
where a isthe name of an array variable. In thiscase pvar will beinvoked whenever any
element of a ismodified.

Write traces are invoked after the variable's value has been modified but before
returning the new value as the result of the write. The trace command can write a new
value into the variable to override the value specified in the original write, and this value
will be returned as the result of the traced write operation. Read traces are invoked just
before the variable's result is read. The trace command can modify the variable to affect
the result returned by the read operation. Tracing is temporarily disabled for avariable
during the execution of read and write trace commands. This means that a trace command
can access the variable without causing traces to be invoked recursively.

If aread or write trace returns an error of any sort then the traced operation is aborted.
This can be used to implement read-only variables, for example. Here is a script that
forces avariable to have a positive integer value and rejects any attempts to set the vari-
able to anon-integer value:

trace variable size w forcelnt
proc forcelnt {name el ement op} {
upvar $nane x ${narme}_old x_old
if I'[regexp {"[0-9]*$} $x] {
set x $x_old
error "val ue nust be a postive integer”

set x_old $x
}
By the time the trace command is invoked the variable has already been modified, so if
f or cel nt wantsto regject awrite it must restore the old value of the variable. To do this
it keeps a shadow variable with asuffix “_ol d” to hold the previous value of the variable.
If anillegal valueis stored into the variable, f or cel nt restoresthe variable to its old
value and generates an error:
set size 47
0 47
set size red
0 can’t set "size": value nmust be a postive integer
set size
0o 47

Thef or cel nt procedure only works for simple variables, but it could be extended to
handle array elements as well.

DRAFT (8/12/93): Distribution Restricted

13.5 Renaming and deleting commands 125

135

Itislegal to set atrace on anon-existent variable; the variable will continue to appear
to be unset even though the trace exists. For example, you can set aread trace on an array
and then use it to create new array elements automatically the first time they are read.
Unsetting a variable will remove the variable and any traces associated with the variable,
then invoke any unset traces for the variable. It islegal, and not unusual, for an unset trace
to immediately re-establish itself on the same variable so that it can monitor the variable if
it should be re-created in the future.

To delete atrace, invoket r ace vdel et e with the same arguments passed to
trace vari abl e. For example, the trace created on col or above can be deleted with
the following command:

trace vdel ete color w pvar
If theargumentstot r ace vdel et e don't match the information for any existing trace
exactly then the command has no effect.

Thecommandt r ace vi nf o returnsinformation about the traces currently set for a
variable. It isinvoked with an argument consisting of a variable name, asin the following
example:

trace vinfo col or
O {w pvar}

Thereturnvaluefromtr ace vi nf o isalist, each of whose elements describes one
trace on the variable. Each element isitself alist with two elements, which give the opera-
tions traced and the command for the trace. The traces appear in the result list in the order
they will beinvoked. If the variable specifiedtot r ace vi nf o isan element of an array,
then only traces on that element will be returned; traces on the array as awhole will not be
returned.

Renaming and deleting commands

Ther enane command can be used to change the command structure of an application. It
takes two arguments:

renane ol d new

Renarre does just what its name implies: it renames the command that used to have the
name ol d so that it now has the name new. New must not already exist as a command
whenr enane isinvoked.

Renarre can aso be used to delete acommand by invoking it with an empty string as
the new name. For example, the following script disables file 1/O from an application by
deleting the relevant commands:

foreach cnmd {open close read gets puts} {
rename $cnd {}
}

DRAFT (8/12/93): Distribution Restricted

126

Managing Tcl Internals

13.6

Any Tcl command may be renamed or deleted, including the built-in commands as
well as procedures and commands defined by an application. Renaming or deleting a built-
in command is probably abad ideain general, sinceit will break scripts that depend on the
command, but in some situations it can be useful. For example, theexi t command as
defined by Tcl just exits the process immediately (see Section 12.5). If an application
wants to have a chance to clean up itsinternal state before exiting, then it can create a
“wrapper” around exi t by redefining it:

rename exit exit.old

proc exit status {
application-specific cleanup

é”xi t.old $status
}
In this example theexi t command isrenamedtoexi t. ol d and anew exi t proce-
dure is defined, which performs the cleanup required by the application and then calls the
renamed command to exit the process. This allows existing scriptsthat call exi t to be
used without change while till giving the application an opportunity to clean up its state.

Unknown commands

The Tcl interpreter provides a special mechanism for dealing with unknown commands. If
theinterpreter discoversthat the command name specified in a Tcl command doesn’t exist,
then it checks for the existence of a command named unknown. If there is such acom-
mand then the interpreter invokes unknown instead of the original command, passing the
name and arguments for the non-existent command to unknown. For example, suppose
that you type the following commands:

set x 24

creat eDat abase |ibrary $x
If there isno command named cr eat eDat abase then the following command is
invoked:

unknown creat eDat abase |ibrary 24

Notice that substitutions are performed on the arguments to the original command before
unknown isinvoked. Each argument to unknown will consist of one fully-substituted
word from the original command.

The unknown procedure can do anything it likesto carry out the actions of the com-
mand, and whatever it returns will be returned as the result of the original command. For
example, the procedure below checks to see if the command name is an unambiguous
abbreviation for an existing command; if so, it invokes the corresponding command:

DRAFT (8/12/93): Distribution Restricted

13.6 Unknown commands 127

proc unknown {nanme args} {
set cmds [info commands $nane*]
if {[Ilength $cnmds] = 1} {
error "unknown command \"$nane\""

tpl evel $cnmds $args
}
Note that when the command is re-invoked with an expanded name, it must be invoked
using upl evel sothat the command executesin the same variable context asthe original
command.
The Tcl script library includes a default version of unknown that peforms the follow-
ing functions, in order:

1. If the command is a procedure that is defined in alibrary file, source thefile to define
the procedure, then re-invoke the command. Thisis called auto-loading; it is described
in the next section.

2. If there exists a program with the name of the command, use the exec command to
invoke the program. This featureis called auto-exec. For example, you can type“l s”
asacommand and unknown will invoke“exec | s” tolist the contents of the current
directory. If the command doesn’t specify redirection then auto-exec will arrange for
the command's standard input, standard output, and standard error to be redirected to
the corresponding channels of the Tcl application. Thisis different than the normal
behavior of exec but it allows interactive programs such asnor e and vi to be
invoked directly from a Tcl application.

3. If the command name has one of several special formssuchas“! ! ” then compute a
new command using history substitution and invoke it. For example, the if the com-
mandis“! | ” then the previous command is re-invoked. See Chapter 14 for moreinfor-
mation on history substitution.

4. If the command name is a unique abbreviation for an existing command, then the
abbreviated command name is expanded and the command is re-invoked.

Thelast three actions are intended as conveniences for interactive use, and they only occur
if the command was invoked interactively. You should not depend on these features when
writing scripts. For example, you should not try to use auto-exec in scripts: always use the
exec command explicitly.

If you don't like the default behavior of the unknown procedure then you can write
your own version or modify the library version to provide additional functions. If you
don’'t want any special actions to be taken for unknown commands you can just delete the
unknown procedure, in which case errors will occur whenever unknown commands are
invoked.

DRAFT (8/12/93): Distribution Restricted

128

Managing Tcl Internals

13.7 Auto-loading

One of the most useful functions performed by the unknown procedure is auto-loading.
Auto-loading allows you to write collections of Tcl procedures and place them in script
filesin library directories. You can then use these procedures in your Tcl applications
without having to explicitly sour ce thefiles that define them. You simply invoke the
procedures. Thefirst time that you invoke alibrary procedureit won't exist, so unknown
will be called. Unknown will find the file that defines the procedure, source the file to
define the procedure, and then re-invoke the original command. The next time the proce-
dureisinvoked it will exist so the auto-loading mechanism won't be triggered.

Auto-loading provides two benefits. First, it makesit easy to build up large libraries
of useful procedures and use them in Tcl scripts. You need not know exactly which filesto
sour ce to define which procedures, since the auto-loader takes care of that for you. The
second benefit of auto-loading is efficiency. Without auto-loading an appliation must
sour ce al of itsscript fileswhen it starts up. Auto-loading allows an application to start
up without loading any script files at all; the files will be loaded later when their proce-
dures are needed, and some files may never be loaded at all. Thus auto-loading reduces
startup time and saves memory.

Using the auto-loader is straightforward and involves three steps. First, create a
library asaset of script filesin asingle directory. Normally these files have names that end
in“. tcl”, forexampledb. t cl orstretch. tcl.Eachfilecancontain any number of
procedure definitions. | recommend keeping the files relatively small, with just afew
related proceduresin each file. In order for the auto-loader to handle the files properly, the
pr oc command for each procedure definition must be at the left edge of aline, and it
must be followed immediately by white space and the procedure’s name on the same line.
Other than this the format of the script files doesn’t matter aslong as they are valid Tcl
scripts.

The second step isto build an index for the auto-loader. To do this, start up a Tcl
application such ast cl sh and invokethe aut o_mnki ndex command asin the follow-
ing example:

aut o_nki ndex . *.tcl
Aut o_nki ndex isn't abuilt-in command but rather a procedure in Tcl’s script library.
Its first argument is a directory name and the second argument is a glob-style pattern that
selects one or more script filesin the directory. Aut o_nki ndex scansall of thefiles
whose names match the pattern and builds an index that indicates which procedures are
defined inwhichfiles. It storestheindex in afilecalledt cl | ndex inthedirectory. If you
modify the files to add or delete procedures then you should regenerate the index.

Thethird step isto set the variable aut o_pat h in the applications that wish to use
thelibrary. Theaut o_pat h variable contains alist of directory names. When the auto-
loader isinvoked it searches the directoriesin aut o_pat h in order, looking in their
t cl | ndex filesfor the desired procedure. If the same procedure is defined in severa

DRAFT (8/12/93): Distribution Restricted

13.7 Auto-loading 129

libraries then the auto-loader will use the one from the earliest directory inaut o_pat h.
Typicaly aut o_pat h will be set as part of an application’s startup script. For example,
if an application usesalibrary in directory / usr /1 ocal /tcl /1 i b/ shapes thenit
might include the following command in its startup script:

set auto_path \
[linsert $auto_path O /usr/local/tcl/Ilib/shapes]

Thiswill add/ usr /1 ocal /tcl /i b/ shapes to the beginning of the path, retaining
al the existing directories in the path such as those for the Tcl and Tk script libraries but
giving higher priority to proceduresdefined in/ usr/ | ocal /tcl /i b/ shapes.
Once a directory has been properly indexed and added to aut o_pat h, all of its proce-
dures become availabl e through auto-loading.

DRAFT (8/12/93): Distribution Restricted

130 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Chapter 14
History

141

This chapter describe£ITs history mechanism. In applications where you type com-
mands interactivelythe history mechanism keeps track of recent commands and makes it
easy for you to re-execute them without having to completely re-type tleentav also

create new commands that are slight variations on old commands without having to com-
pletely retype the old commands, for example to fix typoks history mechanism pro-

vides many of the features availablecih, but not with the same syntax in all cases.
History is implemented by th@ st or y command, which is summarized iable 14.1 .

Only a few of the most commonly used history features are described in this chapter; see
the reference documentation for more complete information.

The history list

Each command that you type interactively is entered ihtetary list. Each entry in the

history list is called amvent; it contains the text of a command plus a serial number iden-

tifying the command. The command text consists of exactly the characters you typed,

before the Tl parser peforms substitutions fr]] , etc. The serial number starts out at

for the first command you type and is incremented for each successive command.
Suppose you type the following sequence of commands to an interadtpyedram:

set x 24
set y [expr $x*2.6]
incr X

At this point the history list will contain three eventsuYtan examine the contents of the
history list by invokinghi st or y with no aguments:

131

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

132

History

hi story
Returns a string giving the event number and command for each event on
the history list.

hi story keep count
Changes the size of the history list so that thecount most recent events
will be retained. Theinitial size of thelist is 20 events.

history nextid
Returns the number of the next event that will be recorded in the history list.

hi story redo ?event?
Re-executes the command recorded for event and returnsits result.

hi story substitute old new ?event?
Retrieve the command recorded for event , replace any occurrences of
ol d by newin it, execute the resulting command, and returns its result.
Both ol d and new are simple strings. The substitution uses simple equality
checks: no wild cards or regular expression features are supported.

Table 14.1. A summary of some of the options for the hi st or y command. Several options have
been omitted; see the reference documentation for details.

hi story
O 1 set x 24

2 set y [expr $x*2.6]

3 incr x

4 history
The value returned by hi st or y isahuman-readable string describing what's on the his-
tory list, which also includesthe hi st or y command. Theresult of hi st ory isintended
for printing out, not for processing in Tcl scripts; if you want to write scripts that process
the history list, you'll probably find it more convenient to use other hi st or y options
described later in the reference documentation, such ashi st ory event.

The history list has afixed size, which isinitially 20. If more commands than that

have been typed then only the most recent commands will be retained. The size of the his-
tory list can be changed with the hi st ory keep command:

hi story keep 100

This command changes the size of the history list so that in the future the 100 most recent
commands will be retained.

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events 133

14.2 Specifying events
Severa of the options of the hi st or y command require you to select an event from the
history list; the symbol event isused for such argumentsin Table 14.1. Events are spec-
ified as strings with one of the following forms:

Positive number: Selects the event with that serial number.

Negative number: Selects an event relative to the current event. - 1 refersto
the last command, - 2 refersto the one before that, and so
on.

Anything else: Selects the most recent event that matches the string. The
string matches an event either if it is the same asthe first
characters of the event’s command, or if it matchesthe
event’s command using the matching rulesfor st ri ng
mat ch.

Suppose that you had just typed the three commands from page 131 above. The command
“i ncr x" canbereferredtoasevent-1or3ori nc,and“set y [expr $x*2.6]"
can bereferredto asevent - 2 or 2 or * 2* . If an event specifier is omitted then it defaults
to-1.

14.3 Re-executing commands from the history list

Ther edo and subst i t ut e optionsto hi st or y will replay commands from the his-
tory list. H st ory redo retrievesacommand and re-executes it just asif you had
retyped the entire command. For example, after typing the three commands from page
131, the command

hi story redo
replays the most recent command, whichisi ncr x; it will increment the value of vari-

able x and return its new value (26). If an additional argument is provided for hi st ory
r edo, it selects an event as described in Section 14.2; for example,

history redo 1
o 24

replaysthe first command, set x 24.

Thehi story substitutecommandissimilartohi story redo except that
it modifiesthe old command before replaying it. It is most commonly used to correct typo-
graphical errors:

set x "200 illineters"
O 200 illineters

history substitute ill mll -1
O 200 millimeters

DRAFT (8/12/93): Distribution Restricted

134

History

14.4

Hi st ory substi t ut e takesthree arguments: an old string, anew string, and an event
specifier (the event specifier can be defaulted, in which caseit defaultsto - 1). It retrieves
the command indicated by the event specifier and replaces all instances of the old string in
that command with the new string. The replacement is done using simple textual compari-
son with no wild-cards or pattern matching. Then the resulting command is executed and
itsresult is returned.

Shortcuts implemented by unknown

Note:

145

Thehi story redoandhi story substitut e commandsare quite bulky; in the
examples above it took more keystrokes to type the hi st or y commands than to retype
the commands being replayed. Fortunately there are several shortcuts that allow the same
functions to be implemented with fewer keystrokes:

I Replaysthe last command: sameas“hi st ory redo”.

I event Replays the command given by event ; same as
“history redo event”.

~ol d*new Replay thelast command, substituting new for old; same as
“history substitute old new'.
All of these shortcuts are implemented by the unknown procedure described in Section
13.6. Unknown detects commands that have the forms described above and invokes the
corresponding hi st or y commands to carry them out.

If your system doesn’t use the default version of unknown provided by Tcl then these
shortcuts may not be available.

Current event number: history nextid

Thecommand hi st ory next i d returnsthe number of the next event to be entered into
the history list:
hi story nextid

o 3
It is most commonly used for generating prompts that contain the event number. Many
interactive applications alow you to specify a Tcl script to generate the prompt; in these
applications you can include ahi st ory next i d command in the script so that your
prompt includes the event number of the command you are about to type.

DRAFT (8/12/93): Distribution Restricted

