University of Illinois at Urbana-Champaign
Department of Computer Science

MP1: Tutorials and Beginning C+-+

CS 225 Data Structures
Spring Semester, 1999

Handed out: Friday, January 29, 1999
Due date: Thursday, February 4, 1999 at 11:59 PM

1 Introduction

In this MP, you will accomplish a number of things. First, you will run through quick tutorials of
three software tools that you will find useful throughout the semester. Then, for the actual coding
part of the MP, you will review some beginning C++ concepts and write some some code yourself
that deals with these ideas. You will write a few classes and deal with testing them via a driver
file.

Don’t be alarmed by the size of this handout — there’s a lot of writing, but it’s only detailed
descriptions of what you have to do. The individual sections shouldn’t take you too long. The MP
has intentionally been designed to be easy so that you have time to look through the code and
slowly review the C++ ideas.

2 Part 1: Programming tool tutorials

The first half of this MP involves familiarizing yourself with certain programming tools that you
can make use of on the sparcs. First, you will learn how to use a Makefile to manage the compiling
of large projects and save yourself compilation time. Second, you will use a program called purify
to track down memory leaks and other memory errors in your program (you may have used such
a tool in CS223 as well). Finally, you will run through a small tutorial on workshop, the new Sun
IDE that has as one of its tools an extremely useful debugger.

Before you start this tutorial, you want to copy the tutorial code into your own directory. Do
this by changing to the directory where you want to deal with your tutorial code and then running
the command:

cp -R “cs225/src/tutorial .

In case you haven’t seen it before, the -R means that the directory “tutorial” and everything
in it will be copied to a new directory called “tutorial” that is a subdirectory of wherever you are
now. Don’t forget the period at the end!!!

2.1 make and the Makefile

NOTE: In this course, we will be using Sun’s compiler, CC. However, the idea of a Makefile works
just as well no matter which UNIX compiler you choose to use.

CS 225—Spring, 1999 2 MP1: Tutorials and Beginning C++

2.1.1 The purpose of the Makefile

If you have never used a Makefile before, then your experience compiling from the command line
at most consists of repeatedly typing in lines like the following:

CC -c filel.C
CC —-c file2.C

and assorted other command-line manipulations of individual files. Now, certainly, you could write
a script to automatically compile all your files and link them, but then everything would be re-
compiled each time you ran the script.

The command make is designed to avoid that problem. With make, you can easily specify a
complex compilation, and simply by typing “make” at the command line, have that compilation
kick into effect for you. All you need to do is specify some of the compilation details in a file known
as a Makefile.

There is another benefit, too, however: each time you type “make”, the system will only recom-
pile:

1. The files that you have changed
2. The files that use interfaces that have been re-compiled

For example, suppose you coded a String class — with files string.h and string.C — using
an Array implementation coded in files array.h and array.C. Certainly, the String files would
#include array.h, because the String files are using the Array interface functions.

Now, suppose you had a program that used these files, and decided after it was done that you
wanted to change some of them. If you made a change to the Array implementation, but not the
interface, then only array.C would be changed. Now, if you were to re-type make, only array.C
would be recompiled, and then the executable would be linked. Similarly, if all you had changed was
string.C, then the make command would only recompile string.C and then re-link. However, if
you make a change to array.h, then not only would the object file for Array have to be recompiled,
but also the object file for String — since String makes use of the Array interface, a change in
the interface of Array potentially affects the compilation of String as well, and therefore String
would need to be recompiled.

However, a file that was unaffected by a change in the Array interface would not need to be
recompiled, and therefore would not be recompiled (if you set up your Makefile correctly).

But, the point is that, once you set up the Makefile, all of that is automatically handled
whenever you type “make”.

2.1.2 The Makefile explained

Inside the tutorial directory you have copied, examine the Makefile.. To begin with, you will
notice helpful directions throughout, all starting on lines that begin with the pound sign (#). In a
Makefile, the pound sign is the comment indicator.

Now, look at the first two non-commented lines of the Makefile:

CS 225—Spring, 1999 3 MP1: Tutorials and Beginning C++

0BJS = \
tutfns.o main.o

At the start of our Makefile, it will be helpful to have a macro that stands for all of the object
files needed by the linker. That’s what this line is. We have two separate object files, and so we
have two separate files listed on the line above. In larger programs, where there are many more
files, there will be many more object files listed above.

Two things to take note of: First, the slash after the OBJS simply means, “continue on next
line”. So, the above is really all one line, and if we had many object files and wanted to write them
over three or four lines, we would simply put those same slashes at the end of all but the last line,
in order to tie all the object files into the same “one-line” macro. Second, the indentation on the
second line is NOT eight spaces; it is a tab. You have to hit the tab key! If you use spaces, it will
be an error and the Makefile will not work.

Next, note that we have a few more macros on the next number of lines. We define a name
for the executable file, which you can change if you prefer using mp0O or jason or whatever else
instead of a.out. We also have macros for the compiler and linker and their options. In particular,
note that CC is the compiler listed, and if we were using g++ instead, then g++ would be listed
there instead. Also, note the —~g on the CCOPTS line. The symbol combination -g is a debugging
flag, and it will compile the program with debugging information that can be used by a debugger.
However, this adds to the size of the final executable, which is why this is an option rather than
always automatically done. If you worked for a company, you would probably want the debugging
information to be there when you were developing the code, but you would probably want to
compile without it before shipping so that you could ship a program that needed less memory.

Finally, we come to the bottom section, where the dependency specification takes place. Ignore
the first few groups of statements for the moment, and move down to the lines that read:

tutfns.o : tutfns.h tutfns.C
$(CC) -c $(CCOPTS) tutfmns.C

The first line says that the object file tutfns.o depends on implementation code from tutfns.C
and interface code from tutfns.h. In general, you will have an object file on that line, followed by
a colon, followed by all the files that object file depends on for its own correct compilation.

The second line specifies how to build this object file. Here, to build tutfns.o we simply
compile tutfns.C. However, notice that by using $() we are invoking one of our previously defined
macros. So, the second line is read by the system as:

CC -¢ —-g tutfns.C

Finally, notice that, again, that second line must be tabbed, and that your Makefile will not
work if you use spaces instead.

Look now at the next two lines, the lines for the main.o executable. We see that the dependency
line for main.o has two files: the main.C file and also tutfns.h. If you look through the main.C,
you will notice that main.C makes use of functions declared in tutfns.h and defined in tutfns.C.
So, if tutfns.h was changed, that would mean that — potentially — the code in main.C no longer
works (for example, what if we eliminated the functions in the tutfns.h file entirely?) So, since
main.C uses the interface or the set of function headers that tutfns.h provides, if the tutfns.h file
changed, then that means the collection of function headers being offered to main.C has changed,

CS 225—Spring, 1999 4 MP1: Tutorials and Beginning C++

and so main.o should be recompiled as well, just so that we can be sure it will still work. Hence,
tutfns.h must appear on the dependency line for main.o. (You could leave it out, but you would
then end up with compilation and linker errors if you did change tutfns.h.)

When you first type “make”, the system will attepmt to create an executable by running the
following lines:

$(EXENAME) : $(0OBJS)
$(LINK) $(LINKOPTS) $(0OBJS)

which, of course, expand to:

a.out: tutfns.o main.o
CC -L/opt/SUNWspro/SC4.0/1ib tutfns.o main.C

In order to do the linking step, it is necessary for the object files to be generated, and thus they
are, using the lines we discussed above and leaving alone any currently-existing object file that does
not need to be re-compiled. Then, once the object files are generated, the compiler links them all
together and creates the executable.

Finally, note the lines:

clean:
-rm *.o0 $(EXENAME)
-rm -r Templates.DB

Here, we are specifying a particular command for make. When we typed make, we could just
as well have typed make a.out. We don’t need to, because in the absence of any extra command
line name, the system assumes we mean the executable. However, we could also have compiled
individual object files by typing lines such as make asserts.o. Just like we can do that, we can
run the lines listed after “clean” above by typing make clean.

These lines remove all object files, the executable files, and the template database (CC creates
a template database whenever it compiles templates with your program). What you are left with
is just your source code — as if you had never compiled in the first place. This is helpful whenever
you want to do a fresh compile, from scratch. Why would you want to do this? Well, there are a
few reasons. First, errors in the Makefile can result in problems, such as when dependency files
are changed but the Makefile isn’t coded to worry about those changes. In that case, once you fix
the Makefile you generally want to recompile from scratch, and so you first run make clean to
clean away the old machine code. Second, sometimes there are problems with the compiler itself
— an odd bug that no one has caught, for example. Usually, all the bug consists of is an inability
to handle a code revision properly, resulting in bizarre linker errors that are similar to what you
would get if you mis-coded your Makefile. So, if you are ever getting a really bizarre linker error
or set of linker errors, and you don’t know what is causing them, sometimes what you should try
is simply running make clean and then recompiling from scratch. By allowing the compiler to
re-read the code instead of trying to keep up with dependency issues, you often get around the
particular problem things are stuck on.

This is not to say that most of your errors will be like this; quite to the contrary, most of your
errors will be of your own doing. But, make clean is there for the times when you need it, or at
least when you think you might need it.

That, then, is an explanation of the Makefile. Throughout the semester, you will see different
Makefile files, but the ideas are always the same as those described above. You can get even more
complicated, though. If you want to learn about make in depth, we recommend you look for a
comprehensive reference on the matter (I believe O’Reilly has a small “Nutshell’ book on make).

CS 225—Spring, 1999 5 MP1: Tutorials and Beginning C++

2.1.3 Using make

Now, while in your tutorial directory, simply type “make” and hit return. You will see compilation
begin, and then stop, once an error is detected. The error is that main.C is using a variable called
Debugrray which is not defined. So, open main.C using your choice of editor, and fix line 4 so that
instead of reading

/* 4 x/ AssignMore(Debugrray, 4);
it instead reads
/* 4 x/ AssignMore(DebugArray, 4);

That is, add the capital ‘A’ to correct the spelling mistake. Now, rerun make, and this time the
program should compile correctly.
That’s it! You have now completed the Makefile tutorial.

3 Using Sun’s IDE, workshop

Use the enclosed Makefile to compile your code, and then run your compiled code by typing a.out.
You should get output that looks as follows:

We are now demonstrating the debugger.

*** properly allocated array

© 00 N O O b

10

**%* improperly allocated array
Segmentation fault

and in your tutorial directory there should now be a core file.

Segmentation faults happen when you are trying to access the object that a pointer points to,
and it turns out that that pointer does not point to what you thought it did. Commonly it instead
points to NULL.

You could certainly track this problem down “by eye” — and in fact, this program is simple
enough that you may have figured it out already — but we will make use of a debugger to help us
find this problem.

While still in the tutorial directory, type the command

workshop&

You will have to wait a bit, but then a small, long rectangular box will appear, with various
symbols on it. In addition, a large box will appear, with options such as “Product Versions” and
“Close”. For now, click “Close” in that box. We will only be dealing with the smaller box.

CS 225—Spring, 1999 6 MP1: Tutorials and Beginning C++

In the smaller box, hold the mouse cursor over the icon of the fly in a red circle with a line
through it. Notice that on the bottom of the box a description appears that says this is the debug
button. Similarly, you can read the descriptions of the other buttons as well. For now, click on the
debug icon, since we will learn how to use the debugger.

A window will appear, listing the contents of your current directory. Select a.out, so that
“a.out” appears in the “Name” window. Then, click on OK to load the debugger with the a.out
file. Once you do that, there will be some processing and such...just wait while that goes on.
Eventually, two windows will appear: the first will have spaces marked such as “Data History” and
“Stack”, and the second window will be the actual main.C file itself.

The smaller window is where you can control the reading of certain data values, and the larger
window is where you can observe the running of the code itself. To begin with, in either window,
click on the arrow that points downward and has a thick line on its other end (it will stay “Start”
when you hover the mouse over it). A third window (an output window) will pull up, you will see
some familar output, and then a small window talking about a “SIGSEGV” will appear. This is
just a signal that a segmentation fault has been encountered. This means you will need to step
through the program to figure out where the error is. So, first, click on “Dismiss” in that small
window. (You might also need to move the windows around a bit to make the output window
visible).

Now, move over to the code window. You will notice that the program has stopped on a line
in the AssignMore. We will see exactly where this is being called from. To do this, we need access
to the main() function again, which means we need to move up the stack of function calls. Find
the icon that shows a colored stack with an arrow pointing up (it is in the code window). Click on
this button once, and the debugger will jump out of the current function call, and up the function
stack to the function that called this one. That function is main(), which is where we want to be.

Now, click on the “1” in the comment at the start of line 1. Actually, you can click anywhere
at the start of the line; the only intention is to mark that as the spot where you want to add a
“stop” or “breakpoint”. Now, note that the second icon from the left is a stop sign with an arrow
in it (labelled “Stop at” when you hover over it). Click on this, and after a moment, a red stop
sign will appear at the start of line 1. Now, whenever we run this program, execution will stop at
line 1 and wait for us to signal what to do next.

Now, go back and click the start arrow again. This time, there is a green arrow that pauses on
line 1, because that is where we placed our stop point. It is now possible to advance line by line,
waiting for a bad effect to occur. To do this, click on the icon with a straight arrow that points
to the right. This icon is the fifth from the right, and is labelled “Step Over”. Click on this three
times, and watch the output window as you click. Note that the green arrow — which marks the
next line to be executed — moves down line-by-line, and the output appears line-by-line as well.
What you are doing here is running the program line-by-line, by stepping over the current line and
executing all of its effects.

What exactly do we mean by “step over”? Well, that phrase is in contrast to “step into”. If we
are on a line that involves a function call, choosing “step over” will simply run that function and
generate the results. Remember, choosing “step over” executes the current line, and everything
involved with the current line. On the other hand, selecting “Step into” (to the left of “Step over,
the green arrow that is bent and points to the right) will not step over the line but will instead step
into whatever function call is on that line, if any. Since after three clicks of “Step over”, you should
be on a line that calls AssignMore, you can now choose “Step into” to step into that function.

When you do this, main.C will disappear from the window, and tutfns.C will pull up instead.
You will be positioned at the first code line of the AssignMore function. This is a two-line function,
and you can step through this function just like you stepped through main.C — namely, by using

CS 225—Spring, 1999 7 MP1: Tutorials and Beginning C++

the “Step over” command to move down line-by-line. Note that the second click of “Step over”
will bring you back to the second line again — or rather, keep you on the second line, since that’s
where you were after the first click. This just means that the loop condition was checked, and it
was found that you are not supposed to exit the for-loop yet, and so you are placed at the first
line of the for-loop’s executable code again. Since there is only one line of executable code for the
for-loop, you are simply kept on the line you were at before. The difference is that now you are
about to run this line for the second time, instead of the first.

So, clock on “Step over” six more times, so that you run through the line six more times
(remember, you are about to run it the second time; you have not done so yet — so you do indeed
need to run the line six more times to total seven). At this point, the debugger will exit the for-loop
and position itself to run the next line, which in this case is the closing bracket at the end of the
function. Choosing “Step over” one more time will bring you back to main.C, and the line right
after the call to AssignMore.

Now, click “Step into” again. You are able to jump into the Printing functioon the same way
you jumped into the AssignMore function. However, now that you are in the function, perhaps you
decide that that really isn’t what you want to do (or perhaps it could have been a long function,
and you only wanted to see the results of the first few lines), and you would prefer to, in one click,
run the rest of this function and jump back to the function that called this one. That can be done
easily, by using the “Step out” command (the other bent arrow, to the right of “Step over”). Now,
you are back in main.C and have been through the entire Printing call, and are now on line 6 of
the the loop a second time, back on the assign line to execute that line of code a third time. (The
“Step out” command can prove to be helpful at some times when you have non-reference objects as
parameters; since those parameters will be copied using the copy constructor, each function call will
call the copy constructors of all our parameters. Since we often don’t want to waste time running
through the copy constructors (unless we suspect those are what might be causing the problems in
our code), we can step out of those copy constructors as soon as we step into them, and once we
have done the “step in, step out” sequence for each of our parameters, at that point the next “step
in” will actually bring us to the function we are trying to call. This is only a problem, though,
when we pass objects of classes we have written; the system is not going to send us into an integer
or character copy constructor.)

Now, at this point, you might want a little proof that the AssignMore loop worked correctly. To
do this, we want to go back into the AssignMore function, so click on “Start” again to re-run the
program from the beginning. And, once again, click on “Step over” until you reach the AssignMore
function, and then “Step into” the AssignMore function.

Now, move to the “Workshop Debugging” window, the one with the “Data History” and “Stack”
windows within it. The “Expression” window allows you to check the values of variables in your
program. For example, type the variable name “theArray” into the “Expression” window, and then
click on “evaluate”. You will see a memory address (a number starting with 0x) appear in the “Data
History” window. If you click on “Display” instead of “Evalutate”, a new window will appear, with
the same memory address but with that address highlighted. When you display memory addresses
in these new windows using the “Display” command, the memory addresses will be highlighted
and it is possible to click on those addresses to learn what is located there. If you move to the
new, small window and click on the memory address that is indicated to be the address stored in
theArray, a new value will appear in the window. This is likely to be some large (garbage) number.
Specifically, you are likely to see something like the following:

x‘a.out ‘tutfns.C‘AssignMore‘theArray
= 142280

CS 225—Spring, 1999 8 MP1: Tutorials and Beginning C++

The variable theArray holds a pointer to the first value in the array, and since you have not
assigned that value yet, you have garbage data in the memory location. If you return to the
“Expression” window and type theArray[0], and then select “Display”, you will see displayed
the same value that was listed as the value at the location held by theArray (in the case of this
example, the debugger will tell you that theArray[0] holds 1442280).

You can do this for any variable in your program, as long as the variable is in the current
scope. For example, even though main.C has a variable called DebugArray, you cannot display its
contents while at this point in the program, because that variable name is not in the current scope
(try it and see!). However, if you choose the “Up” button, you can then display the contents of
DebugArray, since you will then be in the scope where that variable is defined. If you choose to
try this, be sure and select the “Down” button (located to the right of the “Up” button) in order
to move back into the scope of the AssignMore function before moving on with the tutorial.

So, if we want to verify the first few steps of our for-loop, we can do that the same way — by
checking the variables in our program. First, choose “Step over” once, to run the for-loop setup
line and advance to the array assigning line. Now, if you check the value of i, you will see that it
is 0. If you now click on “Step over” once more, and then check the value of both theArray[0],
and also the value at the address stored in theArray, you will see that they both hold the value
4. Another click of “Step over” will change the value of i to 1. And so on. That is how you can
check variable values inside the debugger.

Now, we want to move on with our check of the error, so click on “Step out” to move out of
AssignMore and on to line 5 in main.C. Now, keep clicking on “Step over” until the segmentation
fault is reached again. Notice that it occurs when you try to run line 8, which makes sense, since
the AssignMore function was where our segmentation fault occured earlier.

So, again click on “Dismiss” in the choice window and then restart the program with “Start”.
This time, while we are sitting on line 1, click on line 8 and then on “Stop at” again. This will
set a second breakpoint, but this one on line 8. Now, it is possible to jump from wherever we are
located — line 1 in this case — to the next existing breakpoint that has been set — in this case, line 8
— by using the “Go” command. This command is activated with the button that has a downward
pointing arrow (like “Start”) but with no thick line at the top. It is located to the left of the “Step
into” button. Clicking on “Go” will jump us immediately to line 8, and then you can use “Step
into” to step into the AssignMore function.

Now, before you do anything else, check the value of theArray. You will see that it is (nil).
This means that our pointer holds the address 0, i.e. NULL. Therefore, any attempt to assign to a
value in this array will result in a segmentation fault, because we don’t actually have any memory
allocated for this array — instead, we just hold the value NULL. You can see this for yourself by
clicking on “Step over” twice — the second click, which will run the first assignment, will result in
the segmentation fault you have been getting.

Now, click on “Dismiss” in the choice window, and then choose “Up” to view main.C. Lo and
behold, on line 7 we assigned the pointer DebugArray2 to NULL instead of to newly-allocated
memory. So, that is our error. You can quit the debugger by going back to the tiny window that
was the first window that appeared when you started the debugger. Under the “Workshop” menu,
choose “Exit workshop”.

Finally, to fix the program, open main.C in your editor, and change line 7,

/¥ 7 x/ intx DebugArray2 = NULL;

to the following

/x T *x/ int* DebugArray?2 new int[7];

CS 225—Spring, 1999 9 MP1: Tutorials and Beginning C++

thus allocating the array. Now, if you exit main.C, run “make”, and then type “a.out” to run
the program, the program should run fine and exit gracefully.

This only scratches the surface of what you can do with the IDE. We encourage you to explore
the features of it, including the ability it has to re-compile your code from within the IDE (using
“Build”), and the ability to use the debugger code window as an editor. There are help pages built
in (under “Help”) that can provide you with explanations of workshop features, and there is other
help available as well. You can also ask us — we haven’t used all the features ourselves, either, but
we can help you understand a feature you are having trouble with and perhaps — if we haven’t used
that feature yet — learn a new feature ourselves in the process!

4 purify — a memory leak detector

Finally, we are going to take a quick look at a tool called purify that will help us detect memory
leaks — a problem in the code where we have allocated dynamic memory but not deleted it later
on. purify can help us with other memory problems as well, but memory leaks will be the most
common ones you encounter. (You may have used this in CS223 as well.)

To use purify, you need to alter the Makefile, so open it up in your editor. purify is run
in the linking phase, not the compiling phase, so we want to add the purify command to the link
phase. That is, change this:

$(EXENAME) : $(0BJS)
$(LINK) $(LINKOPTS) $(0OBJS)

to this:

$ (EXENAME) : $(0OBJS)
purify $(LINK) $(LINKOPTS) $(0BJS)

Again, keep in mind that before the word “purify”, you have a tab, not a bunch of spaces!!!

Now, just typing make will be sufficient to invoke purify. Note, though, that since make won’t
do anything if the a.out file is up to date (no changes to the source files since the last compilation),
you will want to rm a.out so that make will recognize the need for re-linking, and thus invoke
purify.

*okok %ok

NOTE: if you were not using a Makefile, you would simply write the word purify before your
command line compilation, as follows:

purify CC main.C tutfns.C

or, alternatively,

CC -c main.C
CC -c tutfns.C
purify CC main.o tutfms.o

$okokk ok

When you relink using purify, you wil notice some rather odd, rather long object files being
generated. That is okay. Once a new a.out has been generated, then you can run the program
just as you did before. The difference is, this time a new window will pull up detailing the memory
problems with the program.

CS 225—Spring, 1999 10 MP1: Tutorials and Beginning C++

Take a look at this window. The little arrows are open-close arrows; clicking on them exposes
more information (if it swings from pointing across to pointing down), or hids it (if it swings the
other way). Click on the “Memory leaked” arrow. This exposes a description of the memory that
purify has said we are leaking. The third arrow that appears is labelled “Purify Heap Analysis”,
and contains some summary information, but the most useful info can be found if you expand the
other two arrows, which are both labelled “MLK” (which is, of course, short for “memory leak”).

If you first click on the top MLK arrow, and then, second, click on the main arrow that appears
when you make the first click, you will see a snippet of code with an arrow pointing to line 3.
Purify is indicating that this is the leaked memory — that is, the memory allocated on this line is
never deleted. If you go back and do the same for the second MLK arrow, you will see that that
leak occurs on line 7, which was the other allocation of dynamic memory in our short program.

So, now that we know where the memory is leaking, the goal is to figure out what to do about
it. And, the solution is generally to add the appropriate delete lines (there might be times, as well,
when you are allocating memory you shouldn’t have allocated in the first place, and so the correct
solution in some of those cases might simply be to remove the lines with “new” rather than to
add lines with “delete”). Remember, for each use of new to allocate memory, you need to have a
corresponding delete to get rid of that memory. And, likewise, for each use of new[] to allocate
an array, you need to use delete[] to deallocate that memory.

So, close up the arrows you opened, by clicking on them again. Then, by clicking on the
“Finished a.out” arrow at the top of the window, you can close up this entire run of the program.
The next run will generate new data (as you will see).

Now, open main.C again in your editor, and between lines 9 and 10, add the lines:

delete[] DebugArray;
delete[] DebugArray2;

Then, save, re-make, and re-run. You will notice a second run of data in the purify window, and
this time, the “memory leaked” line will indicate that no memory was leaked. If you click on that
arrow, the only line there will be the “Purify Heap Analysis” line — there are no errors to report.
Thus, you the program is no longer leaking memory! You can close the purify window simply by
choosing Exit in the File menu.

You can have a number of memory error messages generated by purify, depending on the type
of memory errors you have. You can read about them, and read more about purify in general, on
the man page for purify. Just type “man purify”. Things like writing beyond the bounds of an
array, reading beyond the bounds of an array, reading freed (deleted) memory, and failed memory
allocations can all be detected by purify, and the program can make these errors known to you so
that you can track their causes down in your program and correct them.

5 The programming assignment

To begin with, you will need to copy the given files into your own directory. The files are located
in:

~cs225/src/mpl (MP code)
“cs225/src/mpl/test (test files)

CS 225—Spring, 1999 11 MP1: Tutorials and Beginning C++

5.1 The given code

The first part of the coding assignment involves reviewing looking over the given code. The topics
covered on this MP, either in the given code, or what you have to write, or both, are: the given
code are:

classes and member functions

easy constructors

arrays that are allocated from the stack

passing arrays to functions

dynamically allocated arrays and objects

if-else and for statements

deleting dynamically allocated arrays and
objects

getting a program working -- compilation,
include statements, and so on.

Most of it we have covered between lecture and section, but there may be a few details you
need to look up in your C++ text, either to understand the code or to complete the assignment.
You are welcome to ask on the newsgroup about any syntax concept you don’t understand.

The given files are described as follows.

The classes Fill, Cross, and Bend are three of the five “tube shape” classes used by this MP.
The other two — Tee and Straight — will be written by you.

The idea is basically to imagine a grid in which each square contains one of five types of “tube
shapes”:

Fill (no tubing)

2 i 0 Cross

1EO o Straight

Figure 1: The five tube shapes in this MP

The tube shapes are pre-fabricated tunnel pieces. Some construction companies are in the
process of building a city, and the first thing they are doing is setting up tunnels and water
and sewer lines underneath the city. They order large cubes of concrete (seen as squares in two
dimensions), which have one of the tube patters cut through them. Then, by placing these concrete
blocks next to each other, tunnels can be established by lining up tube entrances of two adjacent
blocks. (We'll see a diagram later.)

CS 225—Spring, 1999 12 MP1: Tutorials and Beginning C++

The class Fill models a block of concrete with no tubing in it. This would be a space filler
block, to be used in a particular spot where there was no need for any tunnel right there. Since
there are no tubes, there are no entrances and no orientation. If we want to print out a picture of
this block, we can use a 3-by-3 grid of asterisks:

%k %k k
* %k %k
*k %k k

The class Cross models a block of concrete with a cross-shaped tube in it. So, there are four
entrances, all of which meet in the middle, allowing people or water to enter from one side of the
block and leave through any of the other three sides. No matter how you rotate this shape, as
long as the base lies flat the picture looks identical, and so there is no concept of orientation for
a Cross block. Therefore, we don’t allow it to be rotated. If we number the entrances as shown,
we will always place a Cross block in the ground so that entrance number 1 faces the “top” of our
blueprint. This is also how it appears in the above figure. This block can be drawn by using dots
to illustrate the open spaces in the block:

* %

* %

The other three classes likewise model such blocks, and their tubings are as in the above picture.
Bend has two entrances, and has a 90 degree turn in the middle. Because of this, it is possible to
turn this block in four different ways and get four different pictures, unlike Fill or Cross. So, it
definitely has an orientation. Its orientation is defined to be either 45, 135, 225, or 315 (the default
is 45). We obtain that number by treating the bend as an “arrow”, as you can see from Figure
1. We can then calculate how far counterclockwise from the horizontal this arrow is rotated — just
like when you measured angles way back in geometry class. The Bend picture in Figure 1 “points”
to the northeast, which is 45 degrees, so the orientation of that block is defined to be 45. If that
block was rotated 90 degrees counterclockwise, it would be “pointing” to the northwest, and so its
orientation would be defined to be 135. And so on. The two entrances are numbered by noticing
whether they are to the right or the left of this imaginary dotted line that moves along the diagonal
of the block, and this numbering scheme is clearly shown in Figure 1. Bend pictures can also be
drawn on the screen in asterisk format — and in four different rotations, at that. The first one below
is the one shown in the Figure 1 — the one with orientation 45. The order after that is 135, 225,
and 315.

*k ok *k ok * % * %
Lok *. . *. . Lok
* %k * % *kk *kk

The Tee class has orientation defined to be 0, 90, 180, or 270, depending on which direction
the “tee part” points in (see Figure 1). There are three entrances, numbered as shown in Figure 1.
Plus, we can also do 3-by-3 asterisk drawings of Tee diagrams.

The Straight class has only two orientations — horizontal and vertical. We will call these 0 and
90. The first rotation we could do would move it from its current horizontal orientation, 90 degrees
counterclockwise to vertical. The second rotation would move it 270 degrees counterclockwise to
take it back to the original position. Whereas with Tee and Bend, you would need to rotate them
four times to return them to their original orientations. (The reason we don’t allow four 90-degree

CS 225—Spring, 1999 13 MP1: Tutorials and Beginning C++

rotations on Straight objects is so we don’t run into the kind of problem where the 0 degree
rotation and the 180-degree rotation would be exactly the same except for door numbers. We want
our orientation possibilities to actually look different, and so for Straight objects, there are only
two options.)

The first three classes are already written for you, and you can examine their code as you write
the code for Tee and Straight. Much of it will be very similar.

The specification for the Tee class is as follows:

Tee

Private Data Members

As with the given code, your Tee class will need a 3-by-3 character array to hold its asterisk design.
In addition, the class needs space for three entrances. Each entrance is either open (1) or closed
(0) so it is best to use integers to represent the entrances so that you can record the status of
entrances. See the other classes for help. Finally, you also need an orientation variable to hold the
object orientation — either 0, 90, 180, or 270.

Public Functions

There are five public functions to write for Tee.

First, you will want a constructor, whose job is it to make sure that all entrances are initially
open, the initial orientation is as shown in the above figure, and the internal array holds a correct
asterisk picture of the current orientation of the object. You have not dealt with constructors a
great deal yet, but you at least know what they are from lecture, and between that and the three
classes of examples, you should be okay. Just follow the format of the given code.

The second and third functions are OpenEntrance and CloseEntrance. These functions work as
in the give code — pass in the number of the entrance and that entrance is then either open or closed,
depending which function you called. Note that it is perfectly reasonable to call OpenEntrance
on an entrance that is already open, and vice-versa. Note also that you want to print out an
appropriate error message if the index passed to these functions is greater than the number of
entrances the block has.

The fourth function you need is Rotate — it takes no parameters, but it moves this object 90
degrees clockwise. So, if a Tee object had orientation 45, and you called Rotate on that object, it
would then have orientation 135.

Finally, you need Imprint. Imprint will take an array, and will write this class’s asterisk
pattern into the array at locations indicated by the other parameters. See other classes for info;
the function header for Tee will be identical to that of Fill or Cross or Bend, except that this one
will be scoped to Tee.

Straight — you also need the class Straight, but the member functions are exactly the same
except for the adjustments you make to take this tubing into account. For example, Tee has
three entrances, but Straight only has two. That will result in certain differences in Straight in
comparson to Tee. Also, Straight only has two possible rotation positions (as explained earlier)
whereas Tee has four, so that will result in some differences as well. Plus, of course, the picture is
different. :-) It is up to you to figure out exactly how Straight’s code will differ from Tee’s code
and the code of the given classes. But, the number of member functions, and their names, and
their parameters, and their ultimate purposes, are exactly the same.

CS 225—Spring, 1999 14 MP1: Tutorials and Beginning C++

5.2 Testing the new classes

The final actual code you need to write is the file main.C
Here, in order, is what you need to do in main.C

1. Dynamically allocate arrays of 10 elements of each of the five shape types. This will require
declaring pointers to those types and then using new for the array allocation. We will not
need all this space for any of the arrays — I will have you use at most 2 or 3 of the 10 cells in
each array — but dynamically allocate arrays of size 10 anyway.

2. We also want a count of how many objects of each kind of shape we have used so far, so
declare an integer variable corresponding to each shape class and set them all to 0. As we
make use of objects in the arrays we just allocated, these counts will go up.

3. Declare a 3-by-3 array of Indicator pointers.

4. Create the following tube picture.

Figure 2: The five tube shapes in this MP

This is done by dynamically allocating Indicator objects, to be pointed to by the Indicator
pointers in your 3-by-3 array. What do you pass into the Indicator constructor? Well, a
character and an integer are what the constructor needs as parameters. (See the Indicator
class.) What the Indicator objects are doing is storing the type and index information of
the object you would like to put here. So, if you wanted, for example, the fifth Tee object,
you would pass in (’t’, 5), since ‘t’ is the first letter of Tee and you wanted the fifth of the
10 Tee objects. Likewise, if you wanted the third Cross object, you would pass in (°c’, 3)
to the Indicator constructor.

We want you to use the objects in the 5 dynamically allocated shape arrays from *low* index
to *high* index. That is, you have 10 objects of some shape, and the first one you use should
be at index 0. If you are supposed to use a second one, that one should be at index 1. If you
are supposed to use a third one, that one should be at index 2. And so on.

CS 225—Spring, 1999 15 MP1: Tutorials and Beginning C++

5. Allocate a picture array that is a 9-by-9 array of characters. This corresponds to the 3-by-3
array of Indicators because each Indicator is the marker for an object of one of our shape
classes. So, if you have a 3-by-3 array of Indicators, and each one refers to a class that can
draw a 3-by-3 picture of itself, that results in a 3-by-3 grid of 3-by-3 grids, which is why we
want a 9-by-9 grid for what we are about to do.

What you are going to do here is traverse through the position array, i.e. the Indicator
pointer array, and, at each position, access the Indicator object there, read its values, and use
those values to determine what object you want out of the 50 objects in your five dynamic
arrays. Then, once you have obtained this object, you want to pass values to its Imprint
function. Specifically, you want pass it your picture array, and also the row and column
number corresponding to this object’s location in the Indicator pointer array.

Huh? :-)

For example, if you are at (2, 0) in your Indicator pointer array, access the Indicator
object that yor array has a pointer to. Let’s assume for a moment that the values you have
in that Indicator are ‘b’ and ‘3’. That means the object that “belongs” here is the third
Bend object. So, it is the third Bend object that you are now dealing with, because that is
the object that the position (2, 0) in your position array was referring you to. Now, invoke
that object’s Imprint function, and pass it the picture array and the values (2, 0).

What this will do is write the 3 by 3 asterisk pattern for your Bend object (or whichever
object it was) into the appropriate spot in the 9 by 9 picture array. Trace through the code
and see for yourself!

6. Once you have run all nine Imprint calls, print out how many of each object are in your
diagram. (see test.1.std)

7. Print the picture array. (Hint: we’ve done a lot of this work for you already. Look at the
files.) When you’ve finished this you are done with your output.

8. Don’t forget to delete your dynamically allocated memory!

Once you finish this, you are done! Now, go ahead and make, and proceed with the MP,
correcting any syntax errors that come up.

6 The overall goal

This MP is as much reading as it is coding — as stated earlier, if you have a decent knowledge of
the given code, and understand how it all works, then you should find that writing the two shape
classes is not that difficult. The main.C file is a little bit trickier. Look over lecture and section
notes on dynamic allocation, and read through a C++ text as well. However, it is possible to finish
the assignment and yet skip out on becoming thoroughly familar with the code, and it is possible
to complete the assignment without running through the tutorials in the first half of the MP. This
is not a good idea, however, for two reasons:

1. First and foremost, you will have difficulties later. Usually, we are not going to give you a
nice chunk of time and a simple assignment. So, since you have extra time, now is when you
should take advantage of that time to learn the software tools and review C++. If you wait
until the second or third MP, you will have less time and will find things to be much harder

going.

CS 225—Spring, 1999 16 MP1: Tutorials and Beginning C++

2. In addition, if you come into office hours for help, we will assume you are familiar with these
tools, at least to the extent that the tutorials and MP have gone over them. Certainly, if
later on you approach us with a question and it turns out you have a small problem with
your Makefile due to a mistake coding it, that’s understandible. However, if you cannot
answer a simple question about the Makefile, or if we ask you to pull up the debugger and
you have no idea how, we do reserve the right to not help you in office hours until you have
gone through the tutorials and at least become somewhat familiar with the basics of these
tools. (Certainly, though, if you have a question specifically about the tools, you are more
than welcome to ask!)

Ultimately, one of the things we’d like you to get out of this course is self-sufficiency. You will
be far better prepared for your future courses if you try things on your own first, and spend some
time trying to track down your errors before coming to us for help. We are here to help you when
you get confused or stuck, but you will not get everything out of this class that you can if you
run to us first, without first attempting to solve your problems yourself. So, one of the reasons we
provide you with these tutorials is so that you can learn the tools needed to help yourself. When
you hit a wall, and cannot figure out a specific problem, then you should approach us with your
question — but only then, after you have spent some time trying to solve it and are honestly stuck.
If you want to learn the most you can from this course, that is the best way to go about your work.

7 Handing in
To handin your MP1 code, use the following command:

handin ¢s225 mpl tee.h tee.C straight.h straight.C main.C

%SII%I%T{SG%CI)%EI?gggLog 17 MP1: Tutorials and Beginning C++

Student Date
Instructor Class

Interruption | Delta
Date | Start | Stop Time Time | Activity | Comments C | Units

