University of Illinois at Urbana-Champaign
Department of Computer Science

MP4: Lists — Interface and Implementation

CS 225 Data Structures
Spring Semester, 1999

Handed out: Saturday, February 20, 1999
Due date: Saturday, February 27, 1999 at 5:00 PM

1 Introduction

In this MP, you will gain experience with both the List ADT and the linked implementation of
lists. At this point, it is assumed that you are familiar enough with C++ to be able to worry more
about the logic flow of a program, rather than focusing only on the syntax. In addition, the code
that is given is all code you have seen before — we have already used the Array class in earlier MPs,
and you spent last week’s section going over the singly-linked List class.

2 The programming assignment

To begin with, you will need to copy the given files into your own directory. The files are located
in:

~cs225/src/mp4 (MP code)
“cs225/src/mp4/test (test files)

3 Adding to the List class

The singlist.* files contain the code you looked at in the previous discussion section. However,
you will notice that at the end of singlist.h, there are five more function headers that were not
there before (“before” meaning, before this MP was released, i.e. five function headers that do not
appear in the library copy of the code and were never discussed in section).

The specification of these five functions is as follows:

e Replace — this function takes two parameters, both of the generic type. This function will
search the list for every occurence of the first parameter’s value, and wherever that value is
found, it will be replaced with the second parameter’s value.

e ToArray. This function takes no parameters, but will return an Array object whose size is
equal to the size of the list (and whose lowest index is 1). This function merely returns an
Array that stores the elements of the list in the same order in which they appear in the list
itself. This function assumes that the list is non-empty (since our Array class is not set up
to handle arrays of zero cells) and will not necessarily work correctly on empty lists.

e SortedInsert — this function takes a single parameter of the generic type. The function
requires two things before it can be called: first, that the “less than” operator (<) must
be defined on whatever real type you substitute for the generic type, and second, that the

CS 225—Spring, 1999 2 MP4: Lists — Interface and Implementation

list must currently be sorted from smallest value to largest value (as defined by the “less
than” operator). The function will not compile if the first requirement does not hold, and it
assumes the second requirement holds, meaning that the user must not call this function on
an unsorted list.

Assuming the requirements hold, the value of generic type will be inserted into the list in
sorted order. If this value already occurs in the list, then the new occurence of it should be
inserted after all occurences already there. For example, if you are inserting “5” into a list
of integers, and there are already two “5”s in the list, then the new “5” should be inserted
as the third “5” in the list, not as the first or second “5”. At the end of this function, the
current pointer should point to the newly inserted value.

e Reverse — this function, which takes no parameters, simply reverses the order of the elements
in the list.

e Splice — this function takes a single parameter, a second list. What the function will do is
splice the entire second list into the first list after the current value of the first list. For
example, if your first list (the object you actually call the function off of) is (3 7 8 2 1)
with the value 8 being the current value, and if the parameter list is (4 9 0), then this
function results in the original list now being 3 7 8 4 9 0 2 1). The second list should be
empty once you are done — that is, you are not splicing a copy of the second list into the first;
rather, you are splicing the actual second list into the first, leaving the second list empty.

Your first task is to write the definitions for these five member functions. They should be added
to the file singlist.C. However, there are a few things you must keep in mind when writing these
definitions:

1. Except for SortedInsert, which assigns current to refer to the newly-inserted element, all
the functions should assign current to refer to the first element in the list (or NULL if the list
is empty) when the function has completed.

2. Please write your five function definitions before the List constructors, as indicated in the
given singlist.C file. Normally you would list the functions in the .C in the same order they
were listed in the interface, simply to make each function easy to find. But, in this case, we
want the functions to be easy to find for the graders, and so it is helpful to have your code
all in one place at the start of the file.

mentations for the five functions above, and if you do so, we reserve the right to grade that
function and its output however we see fit. You are allowed to call the ListNode constructor,
and of course you can declare pointers to ListNode objects. In fact, simply on the basis of
needing to write an insertion function, it should be clear that you will need to do both of
those things. But, you cannot call any of the List functions themselves. This includes the
List constructors, which means that your functions should not be declaring any extra List
objects to manipulate. All manipulation of the nodes themselves must be done using the
fields of the node and not functions calls to pre-written List functions — though you can of
course draw inspiration from any of the code for the List functions as you see fit.

CS 225—Spring, 1999 3 MP4: Lists — Interface and Implementation

4 Using the List interface

For the second part of your MP, you are going to re-implement the same functions, but this time,
you are going to do it from the point of view of the user. That is, rather than change the actual
implementation of the class itself, you will instead use the List interface to operate on List objects
and you will code the requested algorithms that way.

In the file 1istfns.h, you will see function headers for the five functions discussed in the
previous section, except that this time the functions are written as global functions that accept
List objects as parameters and do NOT have private access to the List implementation. Your task
is to write a listfns.C file, which has the definitions of these five functions. The specifications are
exactly the same as discussed in the previous section, except of course for the extra List parameter
in each case.

Even though the specifications are the same, the requirements you have before you are slightly
different. The global functions must have the same behavior as the member functions, but the
global functions are allowed to use the List interface functions, as was just stated above. This was
something you were not allowed to do for the first part, but you will have to do it for the second
part, since you no longer have access to the private data of the List class nor do you have private
access to its ListNode objects.

However, you are NOT!!!! allowed to use the functions you wrote in the first part to aid you in
this part. That is, the two parts are distinctly separate, and for the purposes of this second part of
the MP, you should assume that the five member functions you wrote for the first part of the MP
do not exist. Once again, if you violate this rule, we will grade the relevant functions and output
however we see fit.

5 Other tidbits

1. Make sure you understand the List ADT and its singly-linked implementation — i.e. the
given code in singlist.* — before you even begin to design your algorithms for this MP.
Otherwise, you will be quite lost, and taking random stabs at the problem isn’t going to do
you any good. Also, when you sit down to design the algorithms, think about them carefully,
and take note of any special cases you need to worry about.

2. As of this writing, I am not aware of the status of Mattox’s on-line PSP form, so I am
including a Project Plan summary form to this handout. Your PSP task for this MP and for
all remaining MPs is to turn in a filled out summary form. This means that you need to record
your projections before you begin working on the MP, you need to record the relevant data as
you work, and once you are done, you need to fill in the actual data for your work on the MP
and make the relevant calculations for the data totals and quality measurements. Eventually,
the on-line form will make the relevant calculations for you, and all you will need to do is
record the data. But for now you need to do it all yourself. The official PSP assignment is to
turn in a completed Project Plan summary form, but if the on-line form is completed before
the MP is due, you can turn things in on-line instead. For now, assume no on-line form exists
(meaning use the attached paper form), and if this changes during the week, we will let you
know.

3. Please be aware that the “syntax grace period” of the grading policy ended with MP3. For
this MP and all remaining MPs, you need to get the MP to compile to get any points, as we

CS 225—Spring, 1999 4 MP4: Lists — Interface and Implementation

now expect you are familar enough with the syntax of C++ that you won’t get hung up for
a week on something like a misdeclared pointer or a forgotten #include statement.
6 Handing in your code

To handin your MP4 code, use the command

handin ¢s225 mp4 singlist.C listfns.C

CS 225—Spring, 1999

Project Plan Summary

Student

5

MP4: Lists — Interface and Implementation

Date

Program

Program #

Instructor

Summary
Minutes/LOC

Plan

Language

Actual To Date

LOC/Hour

Defects/KLOC

Yield

A/FR

Program Size (LOC):
Total New & Changed

Maximum Size

Minimum Size

Time in Phase (min.)

Plan

Actual

To Date To Date %

Planning
Design

Code

Code Review

Compile

Test

Postmortem

Total

Maximum Time
Minimum Time

Defects Injected
Planning

Plan

Actual

To Date To Date % Def./Hour

Design

Code

Code Review

Compile

Test

Total

Defects Removed
Planning

Plan

Actual

To Date To Date % Def./Hour

Design

Code

Code Review

Compile
Test

Total

