University of Illinois at Urbana-Champaign
Department of Computer Science

MPS8: Exceptions and Disunion

CS 225 Data Structures
Spring Semester, 1999

Handed out: Thursday, April 8, 1999
Due date: Wednesday, April 14, 1999 at 11:59 PM

1 Introduction

In this MP, you will get to apply the ideas about exceptions that you learned in section, and
also to add an “Undo” operation to the uptree implementation of disjoint sets from the course
library.

2 Exceptions

Exceptions are a language feature designed primarily for error handling. So far in this course,
we have generally dealt with errors by printing out a message and exiting the program. While this
may be the appropriate response for some applications, it could be disastrous for others. Imagine
what would happen if a life-support machine suddenly printed out the message

Trying to read top element from empty stack!

and stopped functioning. The problem of error handling is especially troublesome for library code
since it may be used in many different types of applications. Library writers can detect errors, but
need to let the rest of the program decide on the appropriate response to them, be it printing out
an error message, terminating the program, or paging technical support. Exceptions are designed
to allow this type of flexible error handling.

The basic terminology for exceptions is that the code which detects the error throws an exception
and then the error handling code catches it and deals with the error. In order to throw an exception
simply use the keyword throw:

throw ezception;

where exception is a variable to be “thrown”. Typically it is a member of a special class or struct
intended only for exceptions. For example, if we had declared the CaffeineError class to denote
dangerously low caffeine levels, then when this condition is detected we throw the exception with
the following command:

throw CaffeineError();

and the error handler tries to fix this situation, presumably by seeking appropriate beverages.
(Notice the parentheses after CaffeineError. This line is actually calling the default constructor
for type CaffeineError since throw takes a variable, not a type. If we had previously declared a
variable of type CaffeineError, we could use this as the argument for throw, but most often a
constructor is used as above since exception classes are typically declared only for error handling.)

CS 225—Spring, 1999 2 MP8: Exceptions and Disunion

Not surprisingly, exceptions are caught with the catch keyword. However, before you can use

catch, you need to put the code which may throw the exception into a block preceded by the
keyword try and specify the type of error you wish to catch. The format for this is as follows:

try
{

//potentially dangerous code here

}

catch(error-type parameter-name)

{

//error handling code here

}

For the example above, error-type would be CaffeineError. The parameter-name is optional,

but if it is included then the exception will assigned to the name of the variable placed there.
This can be used to pass information about the error to the error-handling code. See the sample
programs in ~cs225/src/mp8/examples, in particular parameter.C, for more information about
this and other features of exceptions.

3 Your assignment

in:

To begin with, you will need to copy the given files into your own directory. The files are located

~cs225/src/mp8 (MP code)
~cs225/src/mp8/test (test files)
“cs225/src/mp8/examples (sample code using exceptions)

Your task is to make the following changes to the given files:

1. Add the class StackError to the top of stack.h (outside the declaration for Stack). This

class should include one public member variable, a const char* (array/string of constant
characters) called message. This variable will be set to an error message describing the error
which has occurred. Also create a constructor which takes a const char* and initializes this
variable.

Next remove the calls to Assert from stack.C. Replace these with code which checks if the
corresponding error has occurred (either removing or viewing the top of an empty stack) and
throws a StackError exception if appropriate. Use the error message which Assert would
print as the error description in the exception you throw.

. The second part of the MP involves using your new Stack class to implement a function

Undo in the DisjointSets class defined in the nodedisjoint.* files. This function takes no
arguments. It reverses the effect of the last effective call to Union. Since Union combined two
previously-separate sets, Undo will separate the combined set back into the sets from which it
was formed. If Undo is successful it returns a 1, but if no calls to Union remain to be reversed
it returns a 0.

CS 225—Spring, 1999 3 MP8: Exceptions and Disunion

In order to support this operation, you will need to store a record of the changes made to the
nodes in the DisjointSets class. Note that this implementation uses path compression so
Undo actually has to reverse the effects of all Find operations since the most recent Union as
well as the Union operation itself. It is recommended that these changes be stored in a stack
or a stack of lists. The minimum knowledge required to reverse a pointer adjustment is which
node’s parent pointer was changed and the previous value of that parent pointer. Feel free to
store additional information if necessary. Obviously you will need to distinguish the changes
which occur during a Union from changes made during path compression. In addition, Undo
must reverse the changes made to the uptree’s size (stored in the variable count) so that
subsequent unions occur properly.

Since this MP is partially about exception handling, use the newly-added StackError ex-
ception to tell when the Stack is empty. Specifically, don’t use the Is_Empty function in
Undo, but rather catch the exception from the Stack. (Feel free to use Is Empty in other
functions, however, as long as those aren’t part of Undo.) Note that using exceptions this
way is somewhat wasteful since exception handling is relatively slow, but it’s justified here so
that you get practice with exception handling.

Lastly, make sure that the other member functions of DisjointSets handle the additional
“undo information” properly. In particular, it may need to be managed in the constructors
and the destructor. You do not have to copy it in the copy constructor or operator=, however.

Don’t forget your PSP work!

4 Handing in your code

To handin your MPS8 code, use the command

handin c¢s225 mp8 stack.h stack.C nodedisjoint.h nodedisjoint.C

