University of Illinois at Urbana-Champaign
Department of Computer Science

MP3: Inheritance and Virtual Functions

CS 225 Data Structures
Spring Semester, 1999

Handed out: Saturday, February 13, 1999
Due date: Friday, February 19, 1999 at 5:00 PM

1 Introduction

This MP will be your third and final MP that deals with mainly C++ syntax. On this MP, you
will observe the usage of a handful of classes that are arranged in an inheritance hierarchy. Then,
you will add to this inheritance hierarchy yourself.

2 The programming assignment

To begin with, you will need to copy the given files into your own directory. The files are located
in:

~cs225/src/mp3 (MP code)
~cs225/src/mp3/test (test files)

2.1 The given code

The first part of the coding assignment involves reading through and understanding the given code.
To start with, there are a few file pairs you have seen already, namely the asserts.* files as well
as the files for the Array and String classes.

In addition, a Point class has been provided, which basically just provides an object-oriented
way in which to deal with integer coordinate pairs.

Finally, there are four classes — Component, Button, Container, and Window — arranged in an
inheritance hierarchy as follows:

Component
/ \
/ \
/ \
Container Button
/
/
/
Window

That is, Component is the base class of the hierarchy, Container and Button are derived from
Component, and Window is derived from Container.

CS 225—Spring, 1999 2 MP3: Inheritance and Virtual Functions

These classes, which are loosely based on the classes of the same name from the Java AWT
(abstract windowing toolkit) hierarchy, are tools with which to deal with GUI elements. Unfortu-
nately, we cannot draw graphics to the screen here — C++ does not have standard graphics built in,
and we have no way to test them in handin anyway — so instead we will use output print statements
and other statements to represent what would be happening. For example, in the tempMain.C file
given with the original MP3 code distribution, we can simulate a user clicking on a point in a GUI
window by creating a Window object, and then calling the HandleMouseClick function off that
object. The results get printed to the screen in the form of ¢ ‘This button has been clicked
on!’’ types of printed output statements, as can be seen in test.temp.std.

So, what is going on in the actual code? Well, the class Component represents a general graphical
element. There are various types of Components that you can imagine in a graphical system, among
them windows and buttons. Each of these components would draw itself in a different way, it would
handle mouse clicks in a different way, it could be scaled in size and could perhaps be moved to a
different position on the screen, and so on. The goal of the Component class is to provide a set of
common interface functions that all types of Components need to support. So, we know that every
type of component — be it a window, or a button, or whatever — allows you to set the component’s
size, because that is a member function of the Component class. Likewise, we know that every
component can draw itself, via the function Draw() which is in the Component class. And so on.

The class Button is one specialization of this. We can create a button, with a particular size,
at a particular location, and perhaps with a “label” on that button which more or less serves as
a name. Then, that button must support the same kinds of behaviors that all Component objects
must support — Draw (), SetSize(), etc. We promise in Component that these operations can be
called on all Component objects — including objects of classes derived from Component — and so we
cannot promise less when we have a derived class. We must support the behavior that we promised
we would support in the base class.

In addition, however, the button can add button-specific behavior of its own, and in fact our
Button class gives you the ability to read the name label of the button. We can’t put this ability
in Component, because not every type of Component necessarily has a name label to print. But we
know that if we were to create a Button, it has at least an “empty” name label, so we can give the
Button interface this power even if such power is not accessible in general to the entire Component
hierarchy.

Notice, too, that there were certain functions in Component whose declarations ended in =
0; and which weren’t even defined. Those are pure virtual functions. What we are saying is
that we aren’t going to supply code for these functions in the Component class. We want all
Component-derived classes to support these operations, but they are so specific to the particular
class that we could not begin to provide a definition for them here. So, we just say, “derived
interfaces must support these functions (for example, Draw() somehow” and leave it at that. This
makes Component an abstract class — we cannot actually allocate objects of this class, because its
definition is incomplete (three member functions are missing definitions). However, we can use
this incomplete class as a half-completed blueprint, from which we derive (using inheritance) a
more specific blueprint for more specific components. But, each of these components will have the
common behaviors outlined in this half-completed Component blueprint.

Button, on the other hand, is a concrete class. In addition to whatever other member functions it
has, and in addition to whatever other defined member functions from Component it may override
(actually, Button does not override any already-defined Component mmember functions, though
Container does), it fills in the definitions for the pure virtual functions. Now, even though we
may use this blueprint (the Button class) as the base class of an even more detailed blueprint (for
example, a “Colored Button” class), we at least have a complete blueprint now and thus we can

CS 225—Spring, 1999 3 MP3: Inheritance and Virtual Functions

allocate objects of Button. This, again, was unlike Component — we could not allocate objects of
type Component, we could only use that class to derive more specific classes from.

We can still declare pointers to Component objects, though. It is just that, ultimately, those
pointers will need to point to objects of concrete and more specific types, such as Button.

Now, let’s look at the third class, Container. This class has the ability to store many Component
objects within itself, yet we can also view it as a Component in its own right. So, we could perhaps
have a Container of 5 slots, and in those slots hold three Button objects, and 2 objects that were
the hypothetical “Colored Button” objects we spoke of earlier above, or perhaps instead we could
use those last two slots to hold “checkbox” objects or “information box” objects (where you have
space to type in a value) or perhaps just simple tiles that do nothing.

This class overrides SetSize() and SetLocation(), because if you have an array of, say, five
objects, and you shrink the width of the array by halving it, then it is necessary for all the
components stored in the array to have their widths halved as well. The Container is in a way the
“cell border” class, and what we actually put in the cells are other Component objects (or, more
specifically, objects of Component-derived classes). But, if we were to shrink the cell borders by
squeezing everything closer together, then the items inside the cell borders would have to shrink
as well. We cannot very well say, “give me five 10x10 cells and inside each one, place a 100x100
button”. If the cells are only 10x10, the buttons can be only 10x10.

So, the Container functions will at times call the size adjustment functions on its respective
container objects in order to force them to conform with the newer dimensions of the container.
We can do this because all components have these size adjustment functions, because we declared
the interfaces to these functions inside the Component class.

And, likewise, if you wish to Draw a container, you must peform any special drawing work
the container itself needs (for example, drawing the cell borders, or perhaps not doing anything),
and then drawing the individual components that the container contains. This is why we do not
provide a definition for a Draw function in Container. We have decided that Container itself is
an incomplete blueprint, until a more specific container class provides some information about how
to draw that specific type of container. However, we do know how to handle the drawing of the
individual components of the container, so we put that info inside a protected helper function that
we can call from later derived classes.

Finally, we have the Window class. This is simply a concrete container object. We know exactly
how to draw a window — first you need to actually draw the window border and menu bar, and
then you can draw the individual components. So, since we have now completed the information
about how to draw this container, we have a complete blueprint and so we can allocate objects of
type Window.

The tempMain.C file shows a small program that illustrates the use of some of these things.
We are creating a window and setting its size and number of components, and then one by one we
actually add those components. When we are done, we can click in various places of the window,
and the click is “transferred” to the component that is in that spot in the window. When we move
the window, the components inside come with it, so that when we click in a new spot in the moved
window, we are still “transferring” the click to an internally-held component.

So, take a close look at the file syntax of the given code, and try and understand how the
tempMain.C file generates the results that it does, and how easily we are able to transfer control
from one component (the window) to another component (the button) by using functions common
to both (since they are both of the Component type).

CS 225—Spring, 1999 4 MP3: Inheritance and Virtual Functions

2.2 Your task

You are going to write two classes of your own. The first will be called Easel, and will be derived
directy from Component. The second will be called Panel and will be derived from Container.
(The class Panel exists in Java, but Easel is completely made up for this MP.)

The specification for Panel, the easier of the two, is as follows:

Panel

This class is derived from Container. A Panel in Java is a “window” that cannot be a stand-alone
window. For example, when you write an applet and run it in a web page, that is a panel. It has
space set aside to draw and write things in, as a window does, but the panel cannot stand-alone;
it needs to be inside something else. We are going to tweak things slightly, in order to make our
stripped-down version a bit more interesting, but that is the basic idea.

Private Data Members

There are two point objects that are data members of Panel. These point objects will conceptually
hold the lower left and upper right corner points of whatever object — Netscape window, some type
of panel-viewer, or whatever — holds this panel.

Public Functions

There are five public functions to write for Panel

e You first need a default constructor. The internal points in this case can be both initalized
to (0, 0).

e You also want a second constructor, which will accept two Point objects as parameters and
use them to initialize the internal points.

e Next, you want a function ParentResized which takes two point objects (we are assuming
the parent calls this function off its Panel object) and sets the Panel points to these points.
There is nothing to return.

e Since this is to be a concrete class, you will need to fill in the definition for the remaining two
pure virtual functions of the Component class HandleMouseClick having been defined in the
Container class). The Draw() function should print out the line:

This panel is held by an application window
with the following corner points:

followed by the points, in the format:
(1st x coord, 1st yCoord), (2nd x coord, 2nd y coord)
Next, you want the line

This panel holds the following components:

followed by a printing of the components held by the panel.

CS 225—Spring, 1999 5 MP3: Inheritance and Virtual Functions

e The Clone() function should behave as the Clone() functions did in the two given concrete
classes. Note from those two classes that you can indeed call the compiler-supplied copy
constructor. (If that last sentence didn’t make any sense to you, look carefully at the Clone ()
functions for the two given concrete classes and think carefully about what we said about
copy constructors and when we do and don’t have to write them and what happens when we
don’t.)

The specification for Easel, is as follows:

Easel
This class is derived directly from Component.

Private Data Members

There is one private data member for Easel that you must have, and that is an Array of Point
objects. (Note that since it is an Array of objects and not pointers, you will not have any dynamic
memory to worry about and thus will not need to write “the Big 3”. If you find that a few additional
data members would be helpful — some extra integers, perhaps — you can add those as well. That
will be left up to you as a design decision. But the one you have to have is the Array.

Public Functions

There are four public functions to write for Easel.

e You need a default constructor. This constructor should set up your Array to be of size 20
initially, plus of course you should make the appropriate initializations for whatever other
data members (if any) that you added yourself.

e Since this is to be a concrete class, you will need to fill in the definition for the three
pure virtual functions of the Component class. The first one you want to handle is the
HandleMouseClick class. If there is a “mouse click” on this object, you add a point to the
easel at the place where the “mouse click” occured. So, for example, if the easel has corner
points (0, 0) and (20, 30), and you have a “mouse click” at (10, 10), that will be on this easel,
and so you should store a point internally that is at (10, 10).

We will not go into the specifics of how to accomplish this; give it some thought (and remember
you are storing an Array of Points and work out the details. One small note, though — as
we have mentioned in class, if you should fill the current dimensions of your array, and you
want to increase the size of the array to hold more data, you should at that time double the
size of the array, rather than simply increasing the size by one or two.

e The Draw() function should print out the line:
This easel contains the following points:
followed by all the points you have added to the easel via mouse clicks, in the order that you
added those points to the easel. If we could run some graphics, the picture we would draw
is a blank white rectangle with black dots wherever the mouse had been clicked. That is the

kind of thing you are trying to describe in text. The format of each point will be

(x-coordinate, y-coordinate)

CS 225—Spring, 1999 6 MP3: Inheritance and Virtual Functions

on its own line. Of course, “x-coordinate” and “y-coordinate” are to be replaced by the
appropriate numbers.

e The Clone() function should behave as the Clone() functions did in the two given concrete
classes. Note from those two classes that you can indeed call the compiler-supplied copy
constructor. (If that last sentence didn’t make any sense to you, look carefully at the Clone ()
functions for the two given concrete classes and think carefully about what we said about
copy constructors and when we do and don’t have to write them and what happens when we
don’t.)

That is all!

2.3 Testing the new classes

Later today, an extensive test class group will appear that will test things in interesting ways to
teach you more about virtual functions. As long as the above classes are working as we have
described, everything should be fine. Details will appear on the NG.

3 Handing in your code

To handin your MP3 code, use the command

handin ¢s225 mp3 easel.h easel.C panel.h panel.C}

