University of Illinois at Urbana-Champaign
Department of Computer Science

MP5: Trees — Word Counting, Part 1

CS 225 Data Structures
Spring Semester, 1999

Handed out: Thursday, March 4, 1999
Due date: Wednesday, March 10, 1999 at 11:59 PM

1 Introduction

In this MP, you will gain a bit of practice with binary search trees by using one to count words in
a file. You will also get a bit of practice with C++ streams — specifically, file streams, as you will
be writing to and reading from a file. The “MP spec” part of this handout isn’t really much more
than the README file that was posted earlier, since the class you are writing really is quite small.
However, since you have not had much experience with streams yet, the majority of this handout
is a discussion of C++ streams and file I/O. This should make understanding the given code and
what it does somewhat easier, though with your C++ reference book and a careful examination
of the given code, you could accomplish the same thing yourself if you were looking to make life
harder on yourself. :-)

2 The programming assignment

To begin with, you will need to copy the given files into your own directory. The files are located
in:

“cs225/src/mpb (MP code)
“cs225/src/mpb/test (test files)

3 C++ streams

Streams are the tool used for all kinds of I/O in C++. A stream can be defined as a sequence of
characters (i.e. a sequence of bytes), and the various I/O operations simply direct these streams
to various places, so that the bytes flow from, say, memory to the screen, or from a file to memory,
or whatever else you are trying to do. Conceptually, data enters the stream at one end and exits
the stream at the other. For example, when you use a statement such as:

cout << x;

the variable cout is the standard output stream. Conceptually, one end of the stream is attached to
memory, and the other end is attached to the screen, almost as if you had a garden hose running
from memory to the screen. You then enter your data into one end of the stream, the memory
end. The data travels through the stream just like water travels through a hose, and eventually
the data flows out of the other end of the stream, the monitor end, and onto the monitor for you

CS 225—Spring, 1999 2 MP5: Trees — Word Counting, Part 1

to see. Now, this is not necessarily the most precise description of the low-level details, but if you
keep this conceptual picture in your mind, then it will help as we deal with streams.

Generally, the only part of the stream you have control over is the memory end. For example,
when you use an output stream such as cout, the ultimate output end is already attached to a
device of some kind. The output stream cout is attached to the monitor. Another output stream
(let’s call it fileOutputStream just to give it a name for now), might have its ultimate output end
attached to a file, so that you can write to the file. And, you might have an input stream called
fileInputStream that has the initial input end attached to the file, and the output end attached
to memory, so that you can take information from the file, pour it into the stream, and have it
pour out of the stream right in the middle of your memory, so that you can take this data pouring
out of the stream and store it in your variables.

At the non-memory end, the system knows how to deal with the data using a form appropriate
for that device. That is, as the data pours out of cout at the monitor end, the system knows how to
take that data and present it in the appropriate manner on the monitor. As the data pours out of
fileQutputStream at the file end, the system knows how to take that data and actually write it to
the physical implementation of the file. When you want data to be poured into fileInputStream
from the file you are reading, the system knows how to access that physical file implementation and
get at the data so that that data can be poured into the stream. So, generally the non-memory
end is already handled by the system, and you are concerned only with getting data from memory
into the output stream, or from the input stream into memory.

In addition, the memory end of things is handled for the basic, built-in C++ types. If you
are placing an integer into an output stream, the system knows how to do this. This is why code
similar to what you have already seen, such as:

int x;
x = b;
cout <K x;

will work. You are trying to place an integer into the output stream, and the system knows how
to do that.

So, in general your only task is to add stream capabilities to your user-defined classes. Since
all user-defined classes are ultimately made up of built-in types (your class may be something like
“a user-defined class of user-defined-type member data, each of which contains user-defined-type
member data, each of which contains built-in-type member data”, but eventually at the lowest level
the classes are made up of built-in-type data), and the system already has instructions for stream
input and output of the built-in types, you are guaranteed that you can write any object you want
to a stream, or read any object you want from a stream. The format you use is up to you, but
since all objects are basically collections of built-in-type data, you can write any object to a stream
simply by writing the individual member data to a stream, and you can read any object from a
stream simply by reading the member data from the stream one by one and then putting together
the object. These tasks will generally require private access to the object, however (so that you
can read or write the private data), so the function performing the stream access will be a friend
of your user-defined class so that it has that private access to your class.

4 Adding stream capabilities to your classes

Behind the scenes, in the actual language implementation, there is an entire hierarchy of classes
that work together to support I/O. Two of them are istream and ostream. The class istream is a

CS 225—Spring, 1999 3 MP5: Trees — Word Counting, Part 1

general input stream class, and the class ostream is a general output stream class. Whenever you
have written your MPs, you have included the file iostream.h. It turns out that this file simply
includes the headers for istream and ostream, so that you have them in your program as well,
and otherwise all it does is to create the objects cin, cout, cerr, and clog, which are all stream
objects. The variable cin is an object of type istream, and the other three are variables of type
ostream. So, cout, which you have already used extensively, is an object of type ostream, i.e. it
is an output stream object. Likewise, cin is an input stream object. (Never mind the other two
for now.)
Now, you have used cout to print values to the screen as follows:

int x;
x = b;
cout <K x;

What is really going on here is that an ostream member function is being called. The following
code will actually compile and run:

int x;
X = b;
cout.operator<<(x) ;

There is an ostream member function:
ostream& operator<<(int n);

that is being called above. There is a similar function for every basic type in the language; the
function operator<< is simply overloaded many times, each time with a different parameter. So,
no matter which built-in type you try to write to an ostream object, it will work because the class
ostream supports those operations. The compiler simply figures out the correct member function
to call at compile-time, based on the function headers that are available and the type of the variable
you are trying to write to the ostream object.

In addition, note that the function returns a reference to an ostream object; this will be
important in a second.

Now, for a few reasons which we won’t go into right now, you do not have the ability to
add additional such functions to the ostream class. Instead, all user-defined types are written to
ostream objects via an overloaded operator<< that takes two parameters — the object you want
to write to the stream, and the stream itself. For example, look at the String class we have been
providing you:

friend ostream& operator<<(ostream& Out, const String& outputString);

This function takes as parameters the String object that you want to write to the ostream object,
and it also takes the ostream object itself. In particular, it takes a reference to the ostream object,
so that you are writing to the actual ostream object you passed in, and not to a copy of it as would
have been the case if we used pass-by-value. In addition, since this function is associated with the
String class, we need to make it a friend of that class in order to allow this function to have
access to the private data of String. After all, we cannot properly print out the data unless we
have access to it in the first place!

Note that this function also returns a reference to an ostream object; again, this will be im-
portant in just a bit.

Now, take a look at the implementation of this function in string.C:

CS 225—Spring, 1999 4 MP5: Trees — Word Counting, Part 1

ostream & operator<<(ostream& Out, const String& outputString)
{

Out << outputString.stringArray;

return Out;

}

Since stringArray is of type char*, writing this value to an output stream can be done by the
built-in functions of the ostream class. So, we could have written the function as follows:

ostream & operator<<(ostream& Out, const String& outputString)
{

Out.operator<<(outputString.stringArray) ;

return Out;

}

and it would work equally well, since the first version is basically just the “easy syntax” which is
allowed due to the fact that << is an operator.

So, all we are doing in our implementation is writing the internal data of our String object to
the ostream object called Out. And, since this is just a reference to the ostream object that we
passed to this function in the function call, we are really writing the String member data to the
ostream object that we passed to this function in the function call. Therefore, if we have code like
this:

String s1("hi");
cout << s1;

then what we are really doing is making the following function call:

String s1("hi");
operator<<(cout, s1);

Then, in the String friend function operator<<, the variable Out is a reference to cout — i.e. a
second name for the object named cout. The statement:

Out << outputString.stringArray;

is therefore in this case accomplishing the same purpose as the statement:
cout.operator<<(outputString.stringArray) ;

due to the fact that Out is a reference to cout. And, therefore, you print the member char* of
your String object to the screen!
Finally, just as you can chain assignments or additions together:

a=b=c=4d; Xx=a+b+c+d;

you can do the same with stream output. This is where the fact that our operator<< functions
return references to ostream objects becomes so important. Code such as the following, which
prints out two integers and the endl (which is just a character and is thus handled by the ostream
member functions):

int x = 1;
int y = 2;
cout << x << y << endl;

CS 225—Spring, 1999 5 MP5: Trees — Word Counting, Part 1

is really the following:

int x = 1;
int y = 2;
((cout.operator<<(x)) .operator<<(y)) .operator<<(endl) ;
// —-== TTnnmnnnes
// first call (--- is object, ~~" is function)
//
//
// —mmmmmmmm—m——m—————— TTTTETRS
// second call
//
//
//
[/ —mmmmmmm e TTTRAR AR
// third call

Since each call returns the ostream object by reference, once you manipulate cout with the
first call, you then return it — and again manipulate the newly-altered cout with your second call,
and then return it from your second call and manipulate it again with your third call. User-defined
types work the same way, except it is the two-parameter operator<< you are calling and not the
one-parameter operator<<. The code:

String s1("one");
String s2("two");
String s3("three");
cout << sl << s2 << s3;

is really:

String s1("one");
String s2("two");
String s3("three");
operator<<(operator<<(operator<<(cout, sl1), s2), s3);
/- cnnnnneeen -—== ==
// first call (---- = parameters, ~~
//
//
e --
// second call
//
//
[/ TTTTTTTNTTY e -=
// third call
//

= function)

You can mix built-in and user-defined types, as you have seen. The code:

CS 225—Spring, 1999 6 MP5: Trees — Word Counting, Part 1

int x = 1;

int y = 2;

String s1("three);

String s2("four);

cout << s1 << x <K 52 KK y;

is really the code:

int x = 1;

int y = 2;

String s1("three);

String s2("four);

operator<<(operator<<(cout, sl).operator<<(x), s2).operator<<(y);
V7 == =
// first call (---- = parameters,
//
//
e
// second call (----- = ostream object,
//
//
[/ TTTTTTNNY e -
// third call (---- = parameters, ~~~"~
//
//
/] mmmm o TARARAARRRRS

// fourth call (----- = ostream object, ~ = member function

//

PP NP NP

= function)

AnA~

= member function

But the first version is much cleaner and therefore much nicer! And all we need to do to continue
using the first version is to overload operator<< for our classes, so that we have the ability to write
an object of our user-defined type to an output stream.

The system can call the functions in the correct order above based on the fact that a function’s
arguments need to be evaluated before the function itself can be evaluated (which is why call 2
happens before call 3) and on the fact that you must have your object — even if it is an object
returned by a function (as operator<< returns an ostream) — before you can call a function on that
object (which is why call 1 happens before call 2 and why call 3 happens before call 4). You can’t
complete call 4 until you have the object the function is being called on, which means you must
complete call 3 first, but you can’t do that until the first parameter is evalutated, which means you
must complete call 2 first, but you can’t do that until you have the object that function is being
called on, so you must complete call 1 first.

Input streams will work the same way, except we use operator>> instead of operator<<, and
our operator>> functions write data from the stream, to a variable, instead of the other way
around. For example, the code:

int x;
cin >> x; // reads in an integer from the keyboard input

is really the code:

CS 225—Spring, 1999 7 MP5: Trees — Word Counting, Part 1

int x;
cin.operator>>(x); // reads in an integer from the keyboard input

which uses the istream member function
istream& operator>>(int n);

Just as operator<< returns an ostream reference, operator>> returns an istream reference. The
two-parameter version — for, say, the String class — would be:

friend istream& operator>>(istream& In, String& inputString);

5 Command-line arguments

Now, before we proceed with our discussion of streams, it is necessary to pause for a moment and
quickly discuss how to use command-line arguments with a file. Up to this point, we have sent
input to our programs by way of directing a data file into an executable file:

a.out < test.1

This works fine if we had only one file of data, but it is certainly possible to have more as well.
What if we wanted to pass in 5 files of data at once? This is not going to work if we can only use
the above technique. However, we can use what are known as command-line arguments as well. An
example of this would be as follows:

a.out test.l test.2 test.3 test.4 test.b

In the above line, we have 5 arguments to a.out — namely, the test files 1 through 5. In a sense,
you can think of a.out as a function — because when it is first invoked, you start at main(), which
is a function.

The idea is that the function main() can take any number of “parameters”, not by actually
having vast numbers of parameters, but by having exactly two parameters. A main() for a program
that takes command-line arguments starts as follows:

int main(int argc, char* argv[])

{

The first parameter, argc, is the number of strings on the command-line that invoked this function.
In this count, the string a.out counts, so in our example above, argc would have the value 6. The
other parameter, argv, is an array of character pointers. And, as you may recall, in C++ a character
pointer, i.e. a char#* variable, can hold the starting address of a character array. So, this means
that the array argv is an array of character array starting addresses, i.e. an array of C++ built-in
strings. These strings will correspond exactly to the strings on our command-line. So, argv[0] has
the value “a.out”. argv[1] has the value “test.1”. argv[2] has the value “test.2”. And so on.
So, when we begin our program with the line:

a.out test.l1 test.2 test.3 test.4 test.b

CS 225—Spring, 1999 8 MP5: Trees — Word Counting, Part 1

the first thing that happens is that the number of command line strings is counted, and stored in
argc. Second, an array of charx cells indexed from 0 through argc-1 is created, and given the
name argv. Finally, an internal character array is created to hold each string, and the starting
addresses of all those strings are stored in the corresponding cells in the char* array. Then, argc
and argv are passed to main() and the program begins. Once the program ends, the system then
eliminates these internal variables as well.

While in main(), you can refer to argc just as if it was an integer variable you declared
yourself, and you can refer to argv[0] or argv[4] and obtain a char* which is the starting address
of the array holding the appropriate command-line string. With this ability, you can convert the
command-line string to whatever is appropriate — for example, you could pass in the char* to a
String constructor, and you would then have a String object in your program whose value was
the same as one of the command-line arguments you used when you started your program.

6 File streams

Now, although you are given cout and cin by the system, you generally will not directly declare
your own ostream and istream objects. However, you will often create more specific versions of
those objects, by taking a class derived from the class istream or the class ostream and declaring
an object of that class. And, in fact, there are some classes in the system that are classses derived
from istream or ostream, and so if you declare object of such types, you have objects which are
more specific versions of istream or ostream objects.

Two such classes provided by the system are the classes ifstream, which is derived from
istream, and ofstream, which is derived from ostream. You can use these classes by including
the file fstream.h in your program. The class ifstream is a file input stream class, and objects
of this type are streams that allow you to read values out of a file and into memory. Likewise, the
class ofstream is a file output stream class, and objects of this type are streams that allow you to
write values from memory into a file.

We will first examine the ifstream class. Take a look at the main.C for this MP. At one point,
you see the following code:

ifstream textfile(argv[1]);

if (!textfile) // textfile didn’t open properly
cout << "file error!" << endl;
else // textfile DID open properly
{
while (textfile >> newString) // as long as the read-in works
{
sl = String(newString); // cast char* to String
wl.InsertWord(sl);

}
delete newString; // clean up the memory we used
textfile.close(); // when we are done with filestream, close it

The first line is a declaration of an ifstream object. Just like any other declaration, you first
have the type (ifstream), and then the name of the variable (textfile), and then any paramters
that you wish to pass to the constructor (argv[1]). The ifstream constructor takes a charx

CS 225—Spring, 1999 9 MP5: Trees — Word Counting, Part 1

variable, which is what we passed it above, so the value we are passing the constructor does indeed
match the ifstream constructor parameter type.

What should be stored in this char*? Well, what that constructor is trying to do is initialize a
file input stream object. That is, a file input stream object is created by the declaration, and the
end of that stream is attached to memory (i.e. to your program), because it is an input file stream.
But, the start of this stream is supposed to be attached to a file, so that you can read from a file
to memory. Which file should we attach it to? Well, the name of that file is what we are passing
into the ifstream constructor!

If the file exists and can be read from, then the ifstream object is initialized successfully,
and when the constructor call has finished, textfile is a file input stream variable that we can
pass to operator>> functions. But, wait, how can that be? The function operator>> didn’t have
an ifstream parameter, it had an istream parameter. Well, yes, but remember that the class
ifstream is derived from the class istream. So, if an object that is of type ifstream is passed
into a function that takes a parameter of type istream, the system can cast the ifstream object
upward and view it as an istream object instead. So, there is no need to rewrite all our operator>>
functions to accept ifstream objects. We already have operator>> functions that accept istream
objects, and if pass one an ifstream object (or an object of any other class derived from istream),
the system can cast it to an istream object and the operator>> function can be used properly.

What if the file does not exist, though? Or, what if the file cannot be read from, or there
are other such restrictions? Well, in those cases, the ifstream object (called textfile here) will
internally record that there was a failure trying to initialize the stream, and that the stream is now
in the “fail” state. In this case, nothing can be read from the file, because input operations do
nothing if the input stream is in the “fail” state.

So, how can we tell whether the ifstream object was opened successfully or not? Well, there is
a member function called operator! () which is a unary operator — that is, it works on one value,
not two like, say, addition would. This function will return 1 if the ifstream object is in the “fail”
state, and 0 if it is not in the “fail” state. Just as you are used to using “!” to mean “not” or to
reverse a boolean value (i.e. if (!(s1==s2)) means “if it is NOT true that s1 and s2 are equal”),
likewise the same usage is in effect here. When we use the line if (!textfile) above, we are
saying, “if it is NOT true that textfile can be used correctly...”. More specifically, we are asking,
“if textfile is in the “fail” state...”. Then, if the if case is true, that means that operator! ()
returned true, which means that the ifstream object was indeed NOT initialized correctly, and
so our action in this case is to run some error handling code. Otherwise, the ifstream object was
initialized correctly, which means that textfile is now a file input stream that runs between our
file and memory, and so in this case we can proceed to read from the file into memory (our else
case).

Next, we come to the line while (textfile >> newString). Here, we are using the operator>>
function, and since newString is a char* variable (see main.C), we are reading a single text string
from textfile into the character array newString. operator>> then returns an istream object,
just as operator<< returns an ostream object. What happens if the read is unsuccessful (for ex-
ample, if we were at the end of the file and tried to read another string)? Well, the while condition
will be 0, and so the while loop will exit and will not attempt to read or process another string.

But, wait, that doesn’t quite work. When we look at the while loop, we understand it to mean:

while (textfile.operator>>(newString))

But, we said that operator>> returned an istream object. An istream object does not have
values such as NULL and non-NULL, or 0 and 1, and therefore it can’t be “tested” as the condition
of a while loop. So how on earth does the above statement make any sense?

CS 225—Spring, 1999 10 MP5: Trees — Word Counting, Part 1

The answer is that, even though it looks like there is only one function call on this line, there
are actually two function calls on this line. First, the operator>> is being called, and second, the
while condition is being checked for truth or falsehood. Now, since there is no ! as there was
when we initialized the ifstream object, it is a little harder to tell there are two operations here.
There is no visual cue to make it clear — you simply need to use your knowledge of programming
to know that there has to be a check of a condition here (since it is a while loop) but that input is
also going on (since you can clearly see the call to operator>> due to the presence of the stream
object and the >> symbol).

So, we can’t see two separate function calls, but we know there are two separate function calls
there. How can that be? Well, the second operation is a cast or conversion. Such conversions
happen all the time. We spoke of one above — ifstream objects can be converted to istream
objects when needed. As another example, if you have a variable of type int, and you assign it a
float value, the float will be converted to an int (via truncation) before being stored in the int
variable:

int x;
x = 3.6; // float 3.6 is converted to

// integer 3 before being stored in x
cout << x; // will print out 3

We could have made this explicit via a cast

int x;
x = (int) 3.6; // float 3.6 is converted to

// integer 3 before being stored in x
cout << x; // will print out 3

but the language can handle certain casts, such as the one above, automatically without our ex-
plicitly saying to make such a cast.

How can this be done? Well, the language recognizes that you have an integer variable, and
that you have a float value you are trying to assign to it. So, it sees if it has any way of converting
floats to integers, and it does. This seems pretty handy, and perhaps user-defined functions could
benefit from it as well. For example, it might be handy to be able to convert a String value to
an int, so that we could perform numerical calculations on the values of Strings that held only
integers, i.e.:

String s1("2100");
String s2("3100");
int x = (int) s1 + (int) s2; // x now stores 5200

Can we do this? Yes! Well, a conditional yes. We need to have added a specific function to the
String class that allows us to do this. And that function is known as a conversion operator:

String: :operator int()

This is a member function of the String class (well, it would be if we had added it to the String
class) that will read the string — the private data of the class — and convert that string into an
integer that is then returned as the return type. So, the expression (int) s1 above generates
the result 2100 from the String ¢ €2100°°. The actual String object is not necessarily changed;
it depends how we have coded the conversion operator. All the operator really does , given a

CS 225—Spring, 1999 11 MP5: Trees — Word Counting, Part 1

String object that it is called on, is return an int. Which integer is returned is up to us and our
implementation. At any rate, a conversion operator takes no parameters, you don’t need a return
type (and note that we don’t have one) because the return type is implicit in the function name
(int in this case), and the compiler can usually just call these automatically in an attempt to get
our types to match correctly.

Now this might be very confusing; if it is, don’t worry. I am just trying to give everyone a very
clear picture of what is going on here, but understanding this idea is not critical to understanding
streams.

At any rate, that is how we can have the istream object in the while loop and still get an
actual condition check. The answer is, that there is a conversion, to a void*. That is, the class
istream has a member function called

operator voidx()

which, given the istream object that this function is called on, returns a void*, i.e. a type-less
pointer. What value does this pointer hold? Well, it holds NULL if the istream object is in the
“fail” state, and it holds a non-NULL value otherwise. The compiler finds this function during its
desperate search to attempt to find some way of converting the istream returned by operator>>
to a type that holds a 0/1 or NULL/non-NULL value. So, when we see:

while (textfile >> newString)
it is really the code:
while ((void*) (textfile.operator>>(newString)))

and there is our second function call. First, operator>> is called to do the actual input, it returns
the istream object (which as we know is really an ifstream object), and then operator void*()
is called to generate a NULL or non-NULL value from this which is then used in the while condition
check.

Whew! Like I said above, this is all somewhat difficult and you don’t really need to understand
how it all works to use streams. It is enough to know that

while (textfile >> newString)

will attempt to read another string from textfile into newString, and that the while condition
will be true if this is successful, and false if it it not. That is all you need to know. But, if you were
inclined to compare the types in your head and realize something doesn’t make sense, well, that is
what is going on, and so hopefully now it makes sense. What this means it that we can use stream
objects as conditions in while loops and if statements and such, as follows:

// assume we have a stream object called myStream

if (myStream) OR while (myStream)
{ {

means the condition will be true and we will continue as long as the stream is in a legal rather
than a “fail” state. This is accomplished using the operator void*() conversion operator. On
the other hand, we can also do things the other way around:

CS 225—Spring, 1999 12 MP5: Trees — Word Counting, Part 1

// assume we have a stream object called myStream

if (!myStream) OR while (!myStream)
{ {

means the condition will be true and we will continue as long as the stream is in a “fail” rather
than a legal state. It could be in the “fail” state due to an unsuccessful initialization, or due to
being out of elements to read, or other things could force the stream into a “fail” state as well. This
check is accomplished using the operator! () that we used earlier above, and you will notice that
this is exactly what we did when using textfile in the if statement near the start of main.C.

So, anyway, now that we know what is going on in the while condition, we can see that we will
continue to run through the while loop until there are no more strings to input. At that time, we
will attempt to read a string, find that we are all out of strings, the while condition will become
false, and we will exit the while loop.

The last function to worry about, then, is one which closes the file input stream, signifying
that we are done reading from this file. That function is close(), which is a member function of
ifstream. You can see the usage of this in the line textfile.close();, which appears after the
while loop in main.C. Closing the stream is the only thing this function does; there is nothing else
to worry about and thus nothing else to discuss about this function.

So, that is the detailed description of what is going on in the file input part of main.C. There
is a great deal more complexity to file input streams, and input streams in general, but you don’t
need to worry about anything more than we’ve already given you, and so we won’t give you any
more information right now. Deitel Chapter 14 has more info on file streams if you are interested,
and Deitel Chapter 11 talks more about input and output streams in general.

As far as file output streams go, they are used in a very similar fashion. You declare an of stream
object in the same way you declared an ifstream object, namely by using ofstream as the type,
and passing in a char* variable to the constructor. In the case of file output streams, though, this
file is the name of a file you are going to write to. If the file does not exist, then such a file is
created. If the file does exist, and you send nothing more to the ofstream constructor than the
file name, the existing file is for all conceptual purposes removed and re-created. That is, you need
to pass in additional values to the ofstream constructor if you want to create a stream that can
append to a pre-existing file. We are not going to worry about this right now, so you can assume
that each time you create a file output stream, you are creating a brand-new file with nothing in
it and streaming to that file. This means you should just pass a charx* file name to the ofstream
constructor, and nothing else.

Just as you read from a file input stream by using operator>>, you write to a file output stream
by using operator<<. Keep in mind that ofstream is a class that is derived from the class ostream,
and that means that you can cast ofstream objects upward to ostream objects when needed. For
example (AND READ THIS CAREFULLY BECAUSE IT IS A VERY HELPFUL HINT!!), the
String operator<< can be used to write a String object to an ofstream object, because you will
simply be making the call as follows:

// assume textfile is an ofstream object and sl1 is

// a String object

// your code line
textfile << s1;

CS 225—Spring, 1999 13 MP5: Trees — Word Counting, Part 1

// which really calls operator<< as follows:
// operator<<(textfile, sl);

and the of stream object called textfile will be treated as an ostream object by the operator<<
function.

Finally, of stream objects should be closed when you are done with them, using close(), just
as with ifstream objects.

That is more or less everything you need to know about file streams in order to complete the
MP. The file main.C gives you examples of all of this stuff in the context of file input streams, and
you can use the same ideas when you read from a file using streams, and can use similar ideas when
you write to a file using streams.

7 Your assignment

Your task is to write a class called WordCounter, which will be located in the files wordcounter.h
and wordcounter.C.

Private data: a single data member, which will be a binary search tree object. This object will
hold objects of type KeyPair, but only very specific KeyPairs — KeyPairs which hold Strings for
keys and ints for information.

Once you have looked over the keypair.* files and the bstree.* files, the above paragraph should be
sufficient to allow you to:

1. determine how to declare the member data BST,
2. determine how to fill in its template type, and

3. determine whether or not WordCounter is a template (though (3) is also blatantly obvious
from main.C, but try to figure it out from the above description first).

Public functions:

e Constructor - not much to do, other than to handle the initialization of the member BSTree.
Use the initializer list for this — that is, call the default constructor for the BSTree object on
the initializer list of this function. For examples of initializing members on the initializer list,
look at the TreeNode class constructors and the Tree constructor in bstree.*

e InsertWord - takes a String as a parameter. If this String has been inserted before, then the
information integer associated with it should be increased by 1. Otherwise, the integer ”1”
should be associated with this String. The BST handles the storage of the association pairs.

Note that this will not be anywhere near as straightforward as it looks, because the ADT
of the BSTree and KeyPair classes limit what you can do. You will have to find a way to
handle the updating of the information stored in a KeyPair in the BStree using the interface
functions you are given.

You can alter the tree however you like in order to do this. All we care about is that you
implement the specification, not what the tree looks like. (Note: I do NOT mean you can
alter the BSTree class. I just mean that you can alter the BSTree object stored as a member
data of your class.)

You will learn to appreciate a well-written interface after being restricted somewhat in your
attempts to code this function. :-)

CS 225—Spring, 1999 14 MP5: Trees — Word Counting, Part 1

e PrintFulllnfo - prints all Strings stored in the tree, in alphabetical order, along with their
associated integers. See test.x and test.x.std files for examples of how the test data gets
printed out in the end.

e PrintWordInfo - takes a String parameter. If String is in tree, print out String and its
associated info. If it is not, print out String and the number 0. See the top of test.x.std for
examples.

o ReadFromFile - takes a char* which will serve as a file name. create an ifstream similar to
the way we did this in main.C, and read in the information from the file.

e WriteToFile - takes a char* which will serve as a file name, create an ofstream object. This
stands for ”output stream” just as in main.C we used an ”input stream”. We can write to
such an output stream the same way we write to cout. Write out the data in this object.

e *** pnote that in main.C, you read from the file you wrote. So, you can write whatever you
want to the file, as long as you can parse it correctly in the read function.

e *** note also that when you write to the file, you will not necessarily be able to reproduce
the exact same BSTree structure when you read from the file into an object. You want the
same data, but the internal arrangement of the BSTree TreeNodes is not something you care
about.

8 PSP

Mattox is just about done with his PSP program and will be posting instructions concerning how
to use it.

9 Handing in your code

To handin your MP5 code, use the command

handin ¢s225 mp5 wordcounter.h wordcounter.C

